Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилметакрилат анализ

    В реальных процессах полимеризации стирола и метилметакрилата анализ концевых групп, как правило, показывает наличие двух осколков инициатора на цепь, это приводит к мысли, что соединение радикалов является преобладающей реакцией обрыва цепи. Такое предположение принимается в большинстве кинетических обработок этой реакции, но не во всех. [c.128]

    Весьма информативным способом зондирования механизма реакции является введение в систему смеси мономеров стирола и метилметакрилата. Дело в том, что карбкатионы вызывают полимеризацию только стирола, а метилметакрилат не вступает в полимеризацию. Анионы, наоборот, вызывают полимеризацию только метилметакрилата. Свободные радикалы инициируют радикальную сополимеризацию стирола и метилметакрилата. Анализ образующегося полимера (достаточно знать его элементный состав) дает ответ на вопрос, каков механизм полимеризации и, следовательно, какие частицы ее вызывают. [c.318]


    Расчет по пирограммам. Пиролиз при 500 °С является оптимальным для анализа сополимеров-стирола с метилметакрилатом. В этом случае на пирограмме можно выделить два характеристических пика стирола и ММА, которые образуются и при пиролизе соответствующих гомополимеров. [c.250]

    Для анализа сополимеров стирола с метилметакрилатом (ММА) [30] оптимальным является пиролиз при 500 С. На пирограмме можно выделить два характеристических пика стирола и ММА, которые образуются и при пиролизе соответствующих гомополимеров, Для количественных расчетов находят калибровочные коэффициенты с помощью хроматографирования механических смесей гомополимеров, взятых в известных соотношениях. Калибровочный коэффициент рассчитывают по формуле [c.77]

    Второй случай может быть более сложным. В анализируемой системе имеется два вещества, одно из которых образует одну волну, а второе — две, причем одна из них совпадает практически полностью с волной первого компонента. Такая ситуация возникает, например, при анализе смеси метилметакрилата и дибутилфталата. [c.73]

    В настоящее время выработаны следующие методы анализа метилметакрилата. [c.136]

    При анализе экспериментальных результатов, полученных при дисперсионной полимеризации метилметакрилата, в параметрах упрощенного уравнения для специального случая [а, V — малы, см. уравнение (IV.74) ] обнаружено аналогичное большое [c.209]

    Добавление на этой стадии новых порций мономера может привести только к очень незначительному набуханию и разрыхлению структуры полимера. Такое толкование поведения полимери-зующейся дисперсии подкрепляют два экспериментальных наблюдения. Скорость дисперсионной полимеризации акрилонитрила, протекающей в присутствии добавленных частиц полиакрилонитрила, заметно отличается от скорости на соответствующей стадии нормальной полимеризации [104]. Это находится в резком противоречии с результатами, полученными при дисперсионной полимеризации метилметакрилата в присутствии добавленных частиц полиметилметакрилата. В последнем случае скорость полимеризации мало отличается от скорости полимеризации без добавления частиц, при соответствующем общем содержании полимера. Дополнительным подтверждением высказанного представления является также наблюдение, что в дисперсионной полимеризации с непрерывной подпиткой акрилонитрилом происходят неконтролируемые реакции, если допустить вначале уменьшение текущей концентрации мономера до очень низкого уровня, а затем ее увеличить. Это явление возможно при условии, что частицы полимера частично фиксируются в состоянии, в котором значительное ускорение полимеризации обусловлено гель-эффектом, т. е. полимерные радикалы фиксированы, но мономер имеет к ним свободный доступ. Присутствие захваченных радикалов в поли-акрилонитриле при сходных условиях было экспериментально установлено методом электронного спинового резонанса [91 ]. К сожалению, полный анализ проблемы сталкивается с трудностями, так как в случае акрилонитрила соответствующий процесс гомогенной полимеризации в массе отсутствует полимеризация в массе сама является осадительной [93]. [c.212]


    Данный механизм обрыва следует рассматривать как преобладающий, но не как исключительный в пользу этого предположения говорят результаты, полученные при исследовании полимеризации метилметакрилата, которые показывают, что в этом случае обрыв может происходить по обоим механизмам одновременно (см. стр. 105). Анализ взаимосвязи процессов инициирования и обрыва и эффективности инициирования приводит к очень сложным результатам [55] более подробное рассмотрение этого вопроса выходит за рамки данной книги. [c.92]

    Раздельные константы обрыва и соответствующие им энергии активации для метилметакрилата, полученные в последнее время Шульцем с сотрудниками [39] с помощью методики меченых атомов и путем анализа молекулярновесового распределения, приведены в табл. 18 для полноты в нее включены данные, относящиеся к реакции роста. [c.240]

    Если жидкокристаллические структуры могут быть получены растворением сополимера в мономере (стироле, винилацетате, метилметакрилате), то они могут быть превращены и в твердые вещества путем полимеризации мономера при облучении ультрафиолетовым светом или действии перекиси (например, [3]). Рентгенограммы малоугловой дифракции показывают, что структурный тип остается неизменным до и после полимеризации растворителя. Вопрос заключается в том, каково влияние полимеризации растворителя на геометрические параметры. Рис. 14 (Б-С-Б 343/ММА), рис. 15 (Б-С-Б 374/стирол) и рис. 16 (С-Б-С 36Ь]ММА) дают ответ на этот вопрос. Анализ этих графиков показывает, что полимеризация растворителя вызывает уменьшение характеристических па- [c.228]

Рис. 163. Кривая хроматографического анализа ряда пиролизованных сополимеров метилметакрилата (ММА) и этилендиметакрилата (ЭДМА) [120]. Рис. 163. <a href="/info/499559">Кривая хроматографического</a> <a href="/info/826178">анализа ряда</a> пиролизованных <a href="/info/177101">сополимеров метилметакрилата</a> (ММА) и этилендиметакрилата (ЭДМА) [120].
    Для анализа метилметакрилата и дибутилфталата в полимере 1 г образца растворяют в 10 мл бензола и полученный раствор разбавляют метанолом до 50 мл [23]. Прозрачный раствор смешивают с 5—10 мл насыщенного раствора (СНз)4М1 в 92%-ном метаноле в нем определяют волну метилметакрилата с Е —1,88 в и накладывающуюся на нее вторую волну дибутилфталата. Другой образец (весом 1—2 г) растворяют в 20 мл бензола 1 мл прозрачного раствора смешивают с 9 мл того же электролита и измеряют первую волну дибутилфталата с = —1,77 в. По калибровочным кривым, дающим зависимость между высотами первой и второй волн дибутилфталата, можно определить содержание пластификатора и мономера. [c.381]

    Исходя из того что в процессе вибрационного измельчения твердых неорганических веществ появляются новые активные поверхности, способные к хемосорбции, Каргин провел виброизмельчение кварца, графита, поваренной соли, железа, никеля, магния, сажи, окисей цинка и титана в присутствии стирола и метилметакрилата. Анализ продуктов реакции показал, что неорганические вещества способны инициировать полимеризацию изучавшихся мономеров, а образовавшийся полимер способен прививаться к свежевскрытой активной поверхности в процессе вибрационного измельчения. Грон, основываясь на том же принципе, осуществил механическое диспергирование олова в присутствии некоторых низкомолекулярных соединений типа хлор-бензила, бензоила и т. д., а также кварца в присутствии хлористого метила, бутанола, винилхлорида и метилметакрилата. Во всех случаях наблюдалось образование химических связей между диспергированной массой и органическими добавками [79]  [c.344]

    Рентгенографическим методом при больших и малых углах, а также электрономикроскопически, изучалась структура и морфология сополимеров, приготовленных прививанием на полиэтилене, предварительно облученном гамма-лучами, различных мономеров стирола, винилацетата, вннилтолуола, акрилонитрила, метилметакрилата. Анализ рентгенограмм нри больших углах позволяет проследить изменение кристалличности полимера, подвергавшегося прививанию, а также деформации кристаллической решетки полиэтилена как функции природы, частоты и длины прививок на полиэтиленовых цепях. Центральное рассеивание рентгеновских лучей дает важные сведения о распределении объемов кристаллов п позволяет показать, как нри дифракции нри больших углах, что реакции прививания часто бывают гетерогенными и приводят к сосуществованию трех фаз одной, состоящей из непривитого полиэтилена, второй — из привитого сополимера и третьей — из гомополимера. [c.168]

    Исследование с помощью газовой хроматографии примесей метилметакрилата. (Анализ примесей при 150° НФ ППГ + a j.) [c.225]

    Использ> я соотношение (109), можно путем сопоставления расчетных и <спериментальных значений 7 оценить количество дефектов в реальной сет-атой системе. Проведем такой анализ в деталях на примере сетки, образо-1НН0Й на основе сополимера метилметакрилата и 1 -метокси-1 -винил-1-сила-,7-диокса-4,5-(1,2-карборано)циклогептана. Химическое строение этого со-олимера имеет вид [67]  [c.191]


    При 100°С эффект растворителя не проявляется ни для метиленхлорида, ни для диэтилового эфира. Углеводороды С , ie и Сп (температуры кипения соответственно 270, 286 и 302°С) эффективно улавливаются в начальной части (на нескольких первых сантиметрах) колонки. Пики этих соединений имеют правильную форму. Пе удается полностью избежать размывания ника углеводорода i4 (температура кипения 254°С), однако форма пика практически не искажена. Толщина слоя неподвижной фазы также играет определенную роль нри термическом фокусировании. Па рис. 3-18 приведена хроматограмма парофазного анализа сополимера стирола, метилметакрилата и бутилакрилата. 1 мл равновесной паровой фазы вводили без деления потока в капиллярную колонку (50м х 0,25мм) с неподвижной фазой OV-101 (толщина нленки фазы 1 мкм). Продолжительность продувки составляла 60 с. Температура колонки во время ввода пробы составляла 20°С, затем по истечении 1 мин температуру колонки сразу повышали до 60°С и программировали температуру до 120°С со скоростью в град/мин. Па рис. 3-18,а показана хроматограмма равновесной паровой фазы над сополимером, в который ввели но 1 10" % метилметакрилата и стирола и 1 10 % бутилакрилата. Эти соединения прекрасно концентрируются, в то время как ники, элюируемые раньше, имеют искаженную форму за счет размывания зоны во времени. Па рис. 3-18, показана хроматограмма смеси без добавки. [c.44]

    Для определения остаточных мономеров (эфиров метакриловой кислоты) в полимерных материалах в качестве фона рекомендуется насыщенный раствор Н(СНз)41 в 92%-м метаноле или в смеси метанола с бензолом [140]. Были также найдены условия определения остаточного метилметакрилата в присутствии небольших количеств дибутилфталата, применяющегося в качестве пластификатора. Дибутилфталат, как видно из рис. 3.5, образует две волны, одна из которых практически совпадает с волной метилметакрилата. Определение метилметакрилата в этом случае следует проводить по второй (суммарной) волне, вычитая из нее значение высоты первой волны, соответствующей дибутилфталату. Полярографический метод нашел применение также для анализа сополимеров метилметакрилата с другими мономерами, например, при изучении кинетики сополимеризации этого мономера с метакриловой кислотой [144]. [c.108]

    Разработан полярографический анализ сточных вод производства поливинилхлорида [251]. При этом определяли азоди-изобутиронитрил, лаурилпероксид, винилхлорид, ацетальдегид и содержащиеся в стоках хлориды металлов. Средняя относительная ошибка определения компонентов в стоках не превышала 6%. Для определения малых содержаний органических примесей (мономеров — метилметакрилата, стирола и его гомологов инициаторов полимеризации — лаурила и бензоила пероксидов, циклогексилпероксидикарбоната, азодиизобутиро-нитрила) в промышленных стоках производств полимеров был применен полярографический метод в сочетании с экстракцией 252]. [c.155]

    Имеются многочисленные работы и по применению полярографии для изучения процессов сополимеризации двух и большего числа мономеров. Этот метод был использован для изучения сополимеризации стирола с акрилонитрилом [282]. Полярографический метод был применен также для анализа реакционной смеси на остаточный стирол (или метилметакрилат) при определении относительных активностей в условиях совместной полимеризации винилэтилсульфида со стиролом и метилметакрилатом (Шостаковский). [c.185]

    Сополимеризацию системы метилметакрилат+2-метил-5-винилпиридин проводили в блоке при 60 °С 0,1° в присутствии динитрила диизоазомасляной кислоты (0,25% от массы мономеров) в течение 3 ч. По окончании процесса отбирали пробы из ампул и проводили полярографический анализ реакционных сред. На рис. 6.2 представлено графическое определение констант сополимеризации этих мономеров по пересечению кривых в координатах Г —Г2 согласно уравнению [c.190]

    Опубли1ювано очень мало данных, относящихся к анализу метилметакрилата. Типичный технический метилметакрилат [26] удовлетворяет следующим техническим условиям  [c.135]

    Анализ равновесного пара успешно применяется для определения не только спиртов, но и других токсичных веществ в биологических материалах [54,55]—ацетона, ацетальдегида, анестетиков (эфира, хлороформа, гало-тана), основания амфетамина, галогенированных [56— 58] и ароматических [59] углеводородов, метилмеркап-тана [60] и метилметакрилата [61]. В большинстве случаев при определении летучих веществ в жидких биологических объектах техника и приемы количественного анализа аналогичны рассмотренным выше для этилового спирта. Различия в основном касаются условий газохроматографического разделения, выбора стандарта, температуры установления равновесия и способов дозирования в хроматограф газовой фазы. [c.134]

    Метод Даса, по-видимому, особенно удобен для анализа некоторых ненасыщенных сложных эфиров, например винилацетата и аллилацетата. Для анализа этих соединений методы Марквардта и Люса [41, 42] и Мартина [43] не пригодны, так как в условиях этих методов эфиры могут подвергаться гидролизу, что приводит к ошибочным результатам. При анализе винилацетата и винил-бензоата Мартин [43] получил почти удвоенные против ожидаемых значения. Это обусловлено тем обстоятельством, что в условиях указанных выше методов уксусная кислота выделяется не только в результате присоединения ацетата ртути к олефину, но и вследствие выделения 1 эквивалента ее при гидролизе виниловых эфиров. По этой же причине алкалиметрический метод Марквардта и Люса для винилацетата и аллилацетата дает низкие ошибочные результаты. В то же время метилакрилат и метилметакрилат нельзя анализировать этихми методами из-за того, что в условиях этих методов они не реагируют с ацетатом ртути количественно. [c.340]

    Как показал статистический анализ, проведенный П. Флори, в простейшем случае сополимеризации дивинилового мономера (ДВ) с моновиннловым (МВ), когда активности обеих двойных связей первого мономера одинаковы и такие же, как у второго (эти условия приблизительно соблюдаются для систем диметакрилат этиленгликоля—метилметакрилат, дивиниладипинат—винилацетат, -дивинилбензол—стирол и ряда других), величина ркр определяется выражением [c.225]

    Кроме классических методов определения молекулярных весов по концевым группам, применяются и иные способы, которые еще пока не нашли широкого распространения, но показывают высокую эффективность. Это в основном применение разных типов меченых атомов, которые тем или иным способом могут быть связаны с концевыми группами макромолекул, а затем определены путем химического анализа, физическими методами или по радиоактивности, если применены активные изотопы. Так, например, Керн и Каммерер [50] проводили полимеризацию метакрилнитрила, метилметакрилата и винилацетата в присутствии перекиси и-бромбензоила, а полимеризацию винилхлорида— в присутствии перекиси Л1-нитробензоила. Из данных химического анализа они установили, что при мягких условиях полимеризации соответствующие бензоильные радикалы входят в макромолекулу. К сожалению, авторы не проводили определения среднечислового молекуляр- юго веса другими абсолютными методами, поэтому не имеется возможности оценить ошибки метода применительно к данным объектам. [c.277]

    Анализ сополимеров лаурилметакрилат-п-метилметакрилат, полученных этим методом [81 ], позволяет проверить теоретические расчеты. Сополимер лаурилметакрилата и глицидилметакрилата [97 3 (масс.)] с молекулярной массой Мп 15 000 получали в смеси сложноэфирных растворителей. Глицидильные группы обрабатывали метакриловой кислотой из расчета получения средней функциональности 1,5 полимеризуемых метакриловых групп на каждую полимерную молекулу. Прибавляли метилметакрилат и азоинициатор и проводили полимеризацию до [c.108]

    Бови [10] показал, что анализ спектров сополимеров метилметакрилата с а-метилстиролом сходен с описанным выше анализом спектров сополимеров метилметаадрил лта со стиролом. [c.227]

    После этого необходимо убедиться, что рассчитанные параметры действительно описывают молекулярновесовое распределение. Для этого по вычисленным из моментов кривой параметрам аир строится теоретическая кривая распределения, которая и сравнивается с экспериментальной. Если обе кривые совпадают, анализ закончен. На рис. 81 и 82 приведены некоторые характерные примеры. Для полиметилметакрилата расчет дает функцию распределения Флори в чистом виде, что указывает на отсутствие рекомбинационного обрыва и полностью согласуется с приведенными ранее данными Шульца [39], в которых показана преимуш е-ственная роль обрыва путем диспропорционирования при полимеризации метилметакрилата выше 70°. Наоборот, для полистирола при полимеризации в близких условиях установлена чисто рекомбинационная функция распределения. В полном соответствии с этим при использовании для полимеризации стирола радиоактивного инициатора показано, что на одну образуюш,уюся макромолекулу приходятся два радиоактивных радикала [13]. Распределение, установленное для полистирола, полученного при 4000 ат и 60° (степень конверсии 10%), оказалось промежуточного типа в этом случае имеет место обрыв [c.281]

    В работе Страссбергера и сотр. [120] опубликованы также результаты количественного анализа двух сополимерных систем метилметакрилат — метилакрилат и метилметакрилат — этилендиметакрилат. На рис. 163 приведена кривая зависимости отношений высот пиков от состава послед-ней.сополимерной системы. Для каждого из указанных составов исследовали четыре образца. Приведены средние значения и стандартные отклонения для каждого состава. Кривая проведена по средним значениям вертикальные черточки соответствуют стандартным отклонениям в обе стороны. Эти отклонения выражают точность отдельного анализа сополимерного образца неизвестного состава. Состав сополимера можно было определить с точностью 2 ч- 3% в верхней части кривой и 1%, когда содержание полиметилметакрилата не превышало 20%. Эти исследователи нашли, что расхождение обусловлено в основном методом или механизмом деполимеризации, несмотря на то что деполимеризация проводилась в одинаковых условиях. Они сообщают о своем намерении модифицировать систему ввода [c.333]

    Восстановление хннона и окисление гидрохинонов на КРЭ строго обратимы. Детали полярографического анализа гидрохинона в метилметакрилате описаны Стенли [245]." [c.378]

    Для определения содержания метилметакрилата измеряют волну от —1,8 до —2,0 в, после чего вводят фосфатный буфер (pH 7) и наблюдают волну гидрохинона. Перекиси и эфиры пировиноградной кислоты, образующиеся при автоокислении мономера, можно измерять с точностью до 2% (для перекисей) и 5% (для эфиров) при минимальных концентрациях 0,04 мМ перекисного кислорода и 0,001% эфиров [34]. Анализ проводят в смеси бензол — метанол 1 1 (по объему), содержащей 0,3 М L1 1, Описано также прямое определение перекисей в мономере исследована смесь, содержащая 25% мономера, 50% метанола и 25% воды [23]. [c.380]

    Наиболее изученными системами являются сополимеры метилметакрилата (М) со стиролом (С) и метилметакрилата с метакриловой кислотой. В первом случае анализ распределения звеньев, основывается на использовании уравнений, которые отражают распределение между тремя экспериментально разрешающимися компонентами ОСНз-сигнала вкладов 12 триад с центральным звеном М, возникающих при различных типах чередования звеньев М и С и их стереохимических конфигураций [19—24]. Для того чтобы эти уравнения содержали не слишком много параметров, вводят различные, достаточно существенные предположения. Так, во всех работах постулируется марковское первого порядка распределение звеньев М и С, а также (в работах Харвуда и Ито [19—22]) конкретный вид зависимости марковских переходных вероятностей от состава мономерной смеси. Для описания стереоизомерии исполь- [c.121]

    Совокупность различных подходов к анализу ПМР-спектров позволяет проводить независимые оценки как микроблочности, так и стереоизомерной структуры не только сополимеров метилметакрилата со стиролом, но также целого класса спектрально-подобных систем и систем, которые можно превратить в спектрально-подобные с помощью полимераналогичных реакций. Так, в работах [20, [c.122]


Смотреть страницы где упоминается термин Метилметакрилат анализ: [c.467]    [c.186]    [c.220]    [c.269]    [c.286]    [c.73]    [c.69]    [c.86]    [c.220]    [c.380]    [c.258]    [c.376]    [c.123]   
Лабораторные работы по химии и технологии полимерных материалов (1965) -- [ c.380 ]

Акриловые полимеры (1969) -- [ c.136 , c.143 , c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Метилметакрилат



© 2024 chem21.info Реклама на сайте