Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дозирование способы

    Разновидность метода — кулонометрическое титрование — хороший способ проведения титрационных определений без предварительного приготовления титрующих растворов. На основе кулонометрического титрования могут быть созданы удобные и простые автотитраторы, значительно превышающие по своим эксплуатационным характеристикам н надежности существующие приборы, основанные на дозированной подаче титрующих растворов. Кулонометрии присущи высокая правильность, воспроизводимость и малая погрешность анализа. [c.251]


    Вместо описанного метода градуировки можно использовать так называемый метод стандартных добавок. При этом исходят из пряной пропорциональной зависимости. Сигнал фона должен отсутствовать (а = 0). Раствор исследуемой пробы делят на равные части, в которые вводят эталонные добавки в порядке возрастания их концентрации. Если происходит разбавление, нужно вносить поправку на изменение концентрации. Если же в эталонном растворе определяемый компонент находится в значительно большей (например, в 100 раз) концентрации, чем в исследуемой пробе, разбавлением раствора можно пренебречь. Достоинством такого способа является отсутствие разбавления матрицы пробы в растворе, однако необходимы специальные устройства для точного дозирования малых объемов. Из уравнений у1 = Ьх и с/2 = Ь х+Хг) получим Ух = у [х +Хг), а искомое содержание х составит [c.459]

    В зависимости от способа дозирования пенообразователя установки могут быть с предварительно приготовленным водным раствором пенообразователя, хранящимся в специальных емкостях водным раствором пенообразователя, приготовленным в процессе работы системы при помощи специальных дозирующих устройств с комбинированным способом дозирования, при котором магистральные трубопроводы в дежурном режиме заполнены водным раствором пенообразователя, а раствор, необходимый при тушении пожара, приготовляют в процессе работы системы пожаротушения. В качестве датчиков могут использоваться спринклеры типа СВ (ГОСТ 14630—80) и электрические тепловые (ТРВ 1 и 2). Привод от датчиков к исполнительному органу может быть пневматическим и электрическим. Система пожаротушения дает возможность получить высококачественную пену средней кратности (в пределах 70—100). [c.189]

    Для проведения испытаний и внедрения реагентов на месторождениях были составлены программы, изучена эффективность реагентов, выбраны способы и объем дозирования, условия применения и приготовления реагентов. [c.197]

    Приведены свойства химических реагентов, описаны механизм их действия и технология применения для увеличения нефтеотдачи пластов и интенсификации добычи нефти, борьбы с коррозией и отложением солей, подготовки нефти и нефтяного газа, текущего и капитального ремонта скважин. Описаны также технические средства для транспортирования, хранения и дозирования в процессе использования химических реагентов и способы их ввода в технологические системы. Рассмотрены правила обращения с химическими реагентами, требования техники безопасности при работе с ними и мероприятия по охране окружающей среды. [c.208]


    Особенностью второго варианта технологии является нанесение атактического полипропилена непосредственно на наполнитель асфальтобетона - каменный материал. На установке получения асфальтобетона в нагретый наполнитель вводят атактический полипропилен при температуре выше температуры его плавления. Смесь перемешивают до полного смачивания полимером каменного материала и после этого вводят битум. При этой технологии традиционный способ получения асфальтобетона на АБЗ дополняется только узлом дозирования полимера. Данная технология является уникальной и не имеет аналогов в отечественной дорожной отрасли. [c.73]

    Образуемое пятно должно определяться визуально, т. е. по окрашенному остатку СНГ (смазочного масла). К сожалению, этим способом нельзя определить содержание в остатке обесцвеченных компонентов (дистиллятов или газойля) или желтой элементарной серы из-за размывания видимого пятна. Следы смолистых темноокрашенных примесей повышают плотность окраски пятен, что дает завышенные результаты по показателю остатка смазочного масла. При показателе масляного пятна, равном 14, массовая доля масла в остатке составляет 0,0036 %, 25—0,0072 % 50— 0,0144%. Это соотношение установлено по дозированным растворам стандартного смазочного масла в чистом растворителе (нормальный пентан). [c.91]

    Изменение величины пробы обусловливается недостатками конструкции дозирующего устройства, непостоянством условий дозирования и субъективной ошибкой оператора, производящего дозирование. Требования к воспроизводимости могут существенно различаться в зависимости от выбранных способов градуировки хроматографа и обработки хроматограмм, а также от требуемой точности анализа. [c.19]

    Наблюдения за чувствительностью хлопьев к перемешиванию дают полезную информацию относительно способа, места дозирования флокулянта в условиях установки. [c.241]

    Парофазное дозирование проб. Парофазный анализ — одно из быстро развивающихся направлений газовой хроматографии. Сущность метода состоит в том, что анализу подвергается не исследуемый жидкий цли твердый объект, а контактирующая с ним газовая фаза (см. П1.3.5). Наиболее ответственной операцией, определяющей точность анализа, является дозирование в хроматограф газа, находящегося в равновесии с конденсированной фазой. Этот процесс отличается от обычных способов введения в хроматограф газовых проб и требует специальной техники. [c.27]

    Для нормального протекания процесса непрерывного восстановления нитросоединений цинковой пылью весьма существенна точность дозирования восстановителя. Дозирование затрудняется при неодинаковой сыпучести разных партий цинковой пыли и комковании ее в загрузочном отверстии из-за соприкосновения пыли с поднимающимися из редуктора парами. Предпринимались попытки устранить этот недостаток разными способами. [c.286]

    Вязкое уплотнение. Вертикальные экструдеры, в которых питающая зона червяка выступает наверх в загрузочный бункер и привод которых связан с зоной дозирования червяка в нижней части, имеют много преимуществ (например, эффективное питание и высокий коэффициент использования крутящего момента). Однако при этом возникают проблемы, связанные с высоким давлением расплава у нижнего конца червяка, который одновременно играет роль приводного вала. Вал вращается в подшипниках скольжения. В зазоре между валом и подшипником может происходить утечка полимера. Одним из способов уменьшения или полного устранения утечки является нарезка на валу витков обратной резьбы, которая возвращает поступающий в зазор расплав обратно в экструдер в зону высокого давления. Этот способ уплотнения зазора в подшипнике скольжения называется вязким динамически уплотнением. Такую конструкцию можно представить в виде двух экструдеров, соединенных голова к голове . Главный экструдер имеет определенную пропускную способность и создает давление Р в то же время динамическое [c.458]

    Сортировку веществ, состоящих из частиц различной величины, плотности или состава, можно проводить в процессе транспортировки или пересыпания веществ. Пробу анализируемого вещества отбирают специальными приспособлениями (работа которых регулируется по времени или по количеству вещества), затем измельчают и перемешивают каким-либо способом в зависимости от величины частиц. Для анализа применяют небольшую часть такой гомогенной пробы (рис. 8.1). Значительным вкладом в автоматизацию процесса взвешивания явилось применение электронных микровесов [А. 1.8], которые используют в различных методах анализа (например, в HN-анализаторе) и в процессе серийного приготовления растворов определенной концентрации (например, в автомате для приготовления растворов) [А. 1.7]. При взвешивании пробы возникает крутящий момент в коромысле весов, который компенсируется действием электромагнитного устройства (а не наложением гирь). Весы уравновешиваются фотоэлектрическим следящим или вспомогательным электронным устройством. Ток, протекающий после установления равновесия, пропорционален нагрузке его фиксируют при помощи цифрового регистрирующего прибора или, особенно при изменении веса, при помощи самописца. Кроме электронных микровесов, ничего существенного не было введено в автоматизацию процесса дозирования твердых веществ, так как в лабораториях и на производстве почти исключительно имеют дело с дозированием жидких или газообразных веществ. [c.431]


    Дозируют разделяемую смесь в колонку вручную медицинским шприцем для жидкостей или по времени (показания секундомера) и скорости потока газовой смесн (показания реометра). Однако этот способ применяется главным образом в кустарных приборах. В современных же приборах промышленного изготовления дозирование полностью автоматизировано. Среди отечественных приборов промышленного изготовления назовем ПАХ В-04 и Эталон . Их подробную характеристику см. в гл. X. Широко применяются другие препаративные установки. Так, Зельвенский и Фролов довольно просто превратили хроматограф Цвет-1-64 первого выпуска из аналитического в препаративный, заменив узкие аналитические колонки широкими препаративными и присоединив к выходу газа-носителя из термостата препаративную приставку с конденсационными ловушками. [c.214]

    Время введения разделяемой смеси Б колонку определяют по секундомеру или по показаниям реометра. Однако этот способ применяется главным образом в экспериментальных установках. В современных же приборах промышленного изготовления дозирование полностью автоматизировано. Хроматограф Цвет можно переделать из аналитического в препаративный, заменив узкие аналитические колонки широкими препаративными или присоединив к выходу газа-носителя из термостата препаративную приставку с конденсационными ловушками. Производительность препаративных приставок, экспериментальных или выпускаемых промышленностью, несколько десятков граммов в день. [c.280]

    Внешняя калибровка по площадям пиков. Калибровка по площадям пиков более точный метод. По сравнению с методом калибровки по высотам пиков, требующим строгого постоянства рабочих условий, при калибровке по площадям важно лишь постоянство скорости потока газа. Калибровочный график строится таким же способом, как для высот пиков. Если зависимость площади пика от дозированного количества вещества оказывается линейной, то аналогично вышеприведенному выражению [c.78]

    Предварительное сульфидирование катализаторов гидроочистки является важным средством повышения активности катализаторов гидрообессеривания и гидродеазотирования [78,79,134-137]. Существуют различные способы сульфидирования. В частности, рекомендуется проводить сульфидирование катализаторов гидрогенизационных процессов сероводородом. При этом достигается наиболее высокая степень сульфидирования [142], но применение этого способа затруднено из-за высокой токсичности и коррозионной активности сероводорода и сложности его дозирования. Наиболее широко в промышленных условиях применяется сульфидирование катализатора серусодержащей нефтяной фракцией или индивидуальными сераорганическими соединениями [38,79]. Например, дистиллятная нефтяная фракция с высоким содержанием серы пропускается через катализатор в течение 1-2 суток в режиме гидроочистки (давление 3-15 МПа, температура 300-450 С). Однако при этом полного сульфидирования катализатора не достигается вследствие экранирования части активных центров отложениями кокса. Наиболее эффективным является метод сульфидирования специальными серусодержащими веществами [78], такими могут служить сероуглерод, диметилсульфид, н-бутил меркаптан, диметилдисульфид, ди-третнонилполисульфид. Однако применение сероуглерода и меркаптанов сдерживается нормами по охране окружающей среды. Поэтому наиболее успешно применяются диметилдисульфид и диметилсульфид, обладающие низкими температурами разложения (250 С) и дисульфидное масло, получаемое на установке демеркаптанизации ДМД-2. [c.15]

    Многочисленные приспособления и устройства для парофазного дозирования проб можно разделить на две основные группы. Одна из групп использует для установления равновесия сосуды с постоянным объемом, пробы из которых отбираются при переменном давлении. Другая группа устройств предусматривает применение систем с переменным объемом газовой фазы и отбор проб при постоянном давлении. Каждой из этих групп устройств присущи определенные особенности, которые необходимо учитывать при выборе методики подготовки пробы, варианта количественного анализа и способа дозирования газа в хроматограф. [c.27]

    Лучшим и наиболее надежным способом ввода пробы является прямое дозирование, при котором в капиллярную колонку непосредственно вводится нужное для анализа количество вещества. [c.174]

    Главное достоинство способа — простота и возможность использования стандартной газохроматографической аппаратуры без каких-либо изменений газовой схемы. К весьма существенным недостаткам следует отнести потери определяемых веществ за счет сорбции на стенках шприца и особенно на поверхности эластичных резиновых уплотнений. Кроме того, при дозировании газа шприцем трудно получить хорошую воспроизводимость высот (или площадей) пиков на хроматограммах. [c.28]

    В практике применения парофазного анализа используется два варианта пневматического дозирования. Первый предусматривает создание перепада давления в момент дозирования пробы за счет кратковременного перекрывания потока газа-носителя, поступающего в хроматографическую колонку (рис. П. 14, а). Во втором перепад давления создается заранее путем задания в сосуде с пробой давления больщего, чем в испарителе хроматографа (рис. П. 14, б). В отличие от первого, второй вариант пневматического способа позволяет точно измерять перепад давления и тем самым определять долю (или массу) отобранного из сосуда с пробой вещества. Устройство для проведения парофазного анализа с пневматическим отбором проб в виде приставки к хроматографу Цвет-500 подробно описывается в разделе 11.2.2.7. [c.29]

    В основу работы устройства положен пневматический способ введения в хроматографическую колонку газовых проб, отбираемых из сосуда с исследуемым жидким или твердым образцом. Дозирование производится за счет предварительного создания в термостатируемом сосуде с образцом давления газа большего, чем в испарителе хроматографа. Последующее соединение газового пространства сосуда с испарителем хроматографа обеспечивает импульсное дозирование пробы, величина которой зависит от перепада давления и газового объема над исследуемым образцом (21 1. [c.137]

    Выбранные способ и (или) процедура собственно дозирования подготовленной пробы в хроматографическую колонку, материал, конструктивные особенности и температурные режимы испарителя (крана-дозатора), узла деления паров пробы, колонки и всех соединительных газовых коммуникаций должны исключать возможные изменения качественного и количественного состава смеси анализируемых компонентов из-за возможных потерь, связанных с испарением в атмосферу, необратимой сорбцией, термическим разложением или какими-либо химическими превращениями. [c.160]

    Оба эти способа пригодны только для дозирования газов, так как наличие смазки в кране исключает применение высоких температур. При правильной [c.170]

    В отличие от описанных выше способов при дозировании газов по давлению объем пробы остается постоянным, а варьируется давление газа. Этот способ особенно удобен в тех случаях, когда для дозируемых проб не су-ш,ествует подходяш ей затворной жидкости, а также когда проба отбирается из ограниченного объема. Количество вещества, дозируемое в постоянном объеме при варьировании давления, достаточно точно определяется общими газовыми законами. Такой способ дозирования требует наличия вакуумного насоса и образцового манометра. Методика дозирования показана на рис. 10 [c.171]

    Важнейшим фармакокинетическим показателем является скорость элиминации препаратов из организма. Определение характера элиминации играет наиболее существенную роль при разработке стратегии назначения препаратов — частоты их приема, дозирования, способов введения, которые определяются константой скорости элиминации или периодом биологического полусуществования препарата. Процесс элиминации охватывает ряд одновременно протекающих процессов. Наиболее важными из этих процессов являются биотрансформация (превращение лекарственных веществ в организме в другие соединения, как правило, более полярные, растворимые в биожидкостях организма) и почечная экскреция неизмененных лекарственных веществ. Менее существенными путями элиминации являются альвеолярные — выведение препаратов легкими, а также с желчью в случае отсутствия их реабсорбции в кишечнике (если же выделенные с желчью лекарственные вещества вновь всасываются в кишечнике, то имеет место особый тип 4>азы распределения — кишечно-печеночный цикл), выведение с потом, слюной, слезной жидкостью и т. д. [c.109]

    Применяемый до настоящего времени способ дозирования малых количеств вещества при капиллярной хроматографии предложен Дести и сотр. [c.171]

    Дозирование газообразных веществ этим способом не встречает затруднений. Его можно производить с помощью инъекционного шприца с минимальным мертвым объемом илп автоматически управляемой дозирующей петли объемом менее 1 мл. Дозирование проб объемом до 1 мл должно занимать не более половины секунды. [c.172]

    Калибровочный график строится таким же способом, как для высот пиков. Если зависимость площади пика от дозированного количества вещества оказывается линейной, то аналогично выражению (12) имеет место соотношение [c.299]

    Рассмотрим операции таблетирования с целью выяв- ления факторов, влияющих на точность ма<ссы таблетки. Тёхнологический цикл таблетирования складывается из подачи порошка в матрицы, дозирования, прессования сыпучего материала, выталкивания и сбрасывания таблетки. Влияние на точность дозирования способа подачи порошка в матрицы проанализировано выше. Рассмотрим-вопрос об определении проектной точ1ности дозирования роторных таблеточных машин серийного производства, таких, как РТМ-41 и РТМ-41-М2В. [c.106]

    В последние годы у нас в стране и за рубежом предложена замена дорогого и гигроскопичного хлорида алюминия металлическим алюминием [222]. Это позволяет избегать трудностей, связанных с дозированием AI I3 в реактор, и проводить процесс по непрерывной схеме. Комплексы, полученные нз металлического алюминия, на 10—15% активнее комплексов из хлорида алюминия. Однако нетранспортабельность хлорида водорода на большие расстояния является серьезным ч репятстви-ем для внедрения этого способа а установках синтеза этилбензола. [c.232]

    Метод абсолютной калибровки может применяться при анализе газовых смесей. В этом случае в колонку дозируют онределеиные количества компонента (г,), измеряют площади пиков (5г) и строят калибровочный график 5,-= /( ,) Дозируя затем известное количество смеси в колонку и пользуясь калибровочным графиком, рассчитывают содержание ксмпонента в смеси. Способ применяется редко из-за погрешностей при дозировании микрошприцем (особенно велики погрешности при дозировании жидкостей) и необходимости строго постоянного режима работы хроматографа при калибровке и анализе. Методы внутреннего стандарта и нормализации не требуют знания количества пробы, введенной в колонку. [c.87]

    Принятый в классическом титриметрическом методе анализа способ внесения титранта в виде дозированных порций раствора известной концентрации может быть с успехом заменен электрохимическим генерированием этого реагенте непосредственно в объеме анализируемого раствора. В классическом методе вычисляют количество искомого вещества из произведения УТ, где V — объем реагента, пошедший на титрование, Т — содержание реагента в единице объема титрующего раствора (титр). Точно так же количество искомого вещества можно вы числить из произведения х, где / — сила генерируемого тока, т —время генерации реагента. Произведение /т —это количество реагента, генерируемого в единицу времени. Количество реагента УТ, вносимого с одной каплей, эквивалентно количС  [c.256]

    Высокая реакционная способность водорода приводит к проскокам пламени во впускной трубопровод, преждевременному воспламенению и жесткому сгоранию топливных смесей. Этих недостатков можно избежать, если модифицировать топливоподающую систему двигателя. В настоящее время для подачи водорода в двигатель применяют следующие способы впрыск во впускной трубопровод модифицированный карбюратор (как в системах питания пропан-бутановыми и природными газами), индивидуальное дозирование водорода во впускной клапан каждого цилиндра непосредственный выпрыск под высоким давлением в камеру сгорания. [c.173]

    Вначале рассмотрим наиболее ранний способ дозирования топлива и получения однородной (гомогенной) смеси с воздухом — использование карбюратора. В карбюраторе топливо подается в диффузор, скорость поюка воздуха в котором примерно в 20—30 раз превышает скорость топливной струи. В таких условиях струя топлива разбивается на мелкие капли, средний диаметр которых составляет 0,1—0,2 мм. Образовавшиеся капли [c.84]

    В промышленности органических полупродуктов и красителей перерабатываются вещества, находящиеся в различных агрегатных состояниях, в связи с ътим в данной главе описываются способы хранения, транспортировки п дозирования жидкостей, твердых веществ и газов. [c.126]

    Для депарафинизации скважин широко применяется периодическая тепловая обработка забоя скважин путем промывок горячей нефтью с помощью специальных агрегатов 4АДП-1. 50. Хорошо зарекомендовал себя способ депарафинизации скважин путем постоянного дозирования ИЛИ периодического про-давливания в пласт различных растворителей парафина. Этот способ позволяет успешно бороться [c.74]

    Хроматография без газа-носителя . Непосредственное разделение компонентов смеси в отсутствие газа-носителя создает ряд преимуществ по сравнению с проявительным способом, где анализируемая проба разбавляется газом-носителем, а затем размывается в колонке, что осложняет определение микропримесей. При помощи этого метода удается решать задачи концентрирования в изотермическом режиме, определения количественного состава смеси по характеристикам удерживания, повышения точности анализа и определения физико-химических характеристик концентрированных растворов. Хроматография без газа-носителя позволяет коренным способом упростить хроматографическую аппаратуру, фактически устранить ошибки, связанные с дозированием. [c.21]

    Рассмотренный выше адсорбционный способ иммобилизации добавленного в элюент компонента, вступающего в адсорбированном состоянии во взаимодействие с дозируемыми веществами, используется и в так называемой ион-парной хроматографии. В таких случаях на гидрофобизированной поверхности адсорбцией из элюента иммобилизуют, например, ион алкиламмония с достаточно сильно адсорбирующимися на такой поверхности алкильными группами. При дозировании смеси органических кислот они, во-первых, могут образовывать с находящимися в элюенте алкилам-монийными ионами нейтральные молекулы, по-разному адсорбирующиеся на модифицированной поверхности адсорбента, и, во-вторых, могут образовывать такие молекулы с иммобилизованными алкиламмонийными ионами. У разных кислот устойчивость комплексов с аммонийными ионами будет различна и благодаря этому произойдет их разделение. [c.331]

    Первым этапом материального и информационного потока в анализе является подготовка, отбор и дозирование пробы анализируемого вещества [А. 1.6]. В лабораторных условиях проводить отбор и дозирование пробы в общем несложно, но при отборе пробы непосредственно в процессе производства возникает ряд трудностей. Как указывалось, состав отбираемой для анализа пробы должен соответствовать истинному составу анализируемого вещества на данном этапе производственного процесса (разд. 8.2). При отборе пробы в процессе производства это требование не всегда выполняется. В процессе подготовки пробы к анализу, дозирования или в ходе самого анализа в составе и свойствах анализируемой пробы могут происходить неизбежные и не поддающиеся контролю изменения. Подобные изменения могут происходить, например, в процессе образования новой фазы при работе с жидкостями, насыщенными газами, или сжиженными газами вследствие процессов окисления или полимеризации (для олефинов) в результате адсорбционных явлений, происходящих на внутренних стенках труб при взаимодействии нестабильных органических веществ с кислородом или смазочными веществами или в результате диффузии газов в шлангах, трубах или местах соединения труб. Анализируемое вещество может изменять свои свойства и в процессе анализа. При использовании результатов анализа для корректировки технологического процесса отбор, подготовку, дози-)ование и анализ вещества необходимо проводить с минимальными затратами времени. 1ри этом особое внимание следует уделить выбору места отбора пробы. В случае процессов, протекающих с большой скоростью, или при работе с негомогенными продуктами довольно сложно осуществить эти требования. Способ подготовки и дозирования пробы зависит 0Т конкретной аналитической задачи. При выборе способа следует также учесть соответствующие затраты технических средств. Средняя квадратичная ошибка дозирования пробы для проведения технического или ориентировочного анализа составляет 5— 0%, для анализов контроля или управления производством 0,2—2%. [c.431]

    Представляет интерес способ синтеза соли Вокелена (дозированное добавление аммиака к тетрахлорпалладиевой кислоте)  [c.161]

    В начале 1960-х годов в литературе появились работы, в которых газохроматографическому анализу подвергались не исследуемые жидкие или твердые объекты, а газовая фаза над ними. Этот простой прием применялся при исследовании состава летучих соединений, выделяющихся из пищевых продуктов, для контроля содержания вредных веществ в воде, полимерных и биологических материалах. Дозирование в хроматограф газа вместо жидкости или твердого тела значительно расширяет возможности газовой хроматографии, так как позволяет определять летучие компоненты в объектах, прямой ввод которых в прибор невозможен или нецелесообразен по причине недостаточной чувствительности детекторов, присутствия легко разлагающихся компонентов, загрязнения колонки нелетучим остатком или нарушения существующего в системе химического равновесия. Такой способ определения летучих веществ в английской литературе получил название Head-Spa e Analysis, а в русской — сначала анализ равновесного пара , а затем парофазный анализ (ПФА). [c.232]

    Постепенное вырождение кайносимметрии при переходе к последующим периодам Системы, где развиваются вторично-периодические свойства, придали новое направление отбору природой биогенных элементов и, в частности, видимо, обусловили особенности роли К и атомов фосфора, серы и иода в живых организмах, давая тем самым начало проявлению химических индивидуальностей. Деление р- и -элементов на ранние и поздние, утверждая, как известно, ряд специфических их особенностей, в то же время создает и предпосылки к проявлению резко выраженных индивидуальных свойств. Так, элементы N и Р, стоящие на границе ранних и поздних р-элементов, обладают большим и удачно дозированным числом непарных электронов, а потому способны давать прочные кратные связи к этому же способу образования молекул склонны (в несколько меньшей степени) и их соседи по Системе С и О. Большая электронная плотность в области кратных связей вызывает частые проявления иррегулярных взаимодействий электронов в области перекрывания и создает мгновенно проявляемые случаи динамической корреляции и нарушения симметрии в электронной оболочке. Результатом оказывается электронное сопряжение одиночных и кратных связей, электронная делокализация, а с ними и протонная таутомерия. Все это приводит обычно к повышению реакционной способности около кратных связей и около временно возникающих электрических и магнитных моментов молекулы. [c.355]

    Этот способ интересен простотой аппаратурного оформления. Однако раздельная дозированная подача азотной кислоты в различные точки реактора осложняет процесс и затрудняет регулирование его режима. Сама реакция нитрования протекает, по-видимому, не в оптимальных условиях, так как указанная конверсия азотной кислоты в нитропарафипы меньше (около 30%), чем достигаемая при проведении процесса в змеевиковом реакторе (около 40%) [195]. Наконец, при этом способе неприменима более дешевая и доступная разбавленная азотная кислота. Тем не менее реактор такой конструкции, носящий название адиабатический реактор , применен па заводе в Стерлингтоне. [c.582]

    Такой способ дозирования используется только в тех случаях, когда действительно необходимо точно знать кол1 ество нанесенного вещества. При этом точность дозирования зависит только от точности применяемых весов. [c.169]

    Простая дозирующая петля состоит из двух трехходовых кранов, капилляра и стеклянной трубки объемом до 5 мл, расположенных как показано на рис. 5. Такую дозирующую нетлю нельзя жестко монтировать в аппаратуре, поскольку для заполнения пробой ее необходимо вынимать из прибора. Способ дозирования ясен из схемы. [c.169]

    Усовершенствованный способ дозирования, прн котором система может жестко монтироваться в приборе, предложили Хоомейер и сотр. (1958). [c.169]


Смотреть страницы где упоминается термин Дозирование способы: [c.13]    [c.203]    [c.79]   
Крашение пластмасс (1980) -- [ c.279 ]

Крашение пластмасс (1980) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

АППАРАТУРА ДЛЯ ПАРОФАЗНОГО АНАЛИЗА Основные способы дозирования в хроматограф равновесной газовой фазы

Дозирование материала выбор способа

Способы введения, дозирования пестицидов и учета их действия на тест-объект

Способы дозирования и их особенности



© 2025 chem21.info Реклама на сайте