Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деполимеризация механизм

    Чем выше теплота полимеризации, тем меньше склонность полимера к термическому распаду по механизму деполимеризации (т. е. с образованием мономера). При значении теплоты полимеризации ниже 60 кДж/моль полимер распадается в основном до мономера. [c.231]

    Итак, термостабильность полимеров является одной из важнейших характеристик их эксплуатационной пригодности. Распад полимеров под тепловым воздействием приводит к резкому падению их физико-механических свойств, выделению низкомолекулярных продуктов, зачастую токсичных и пожароопасных. Знание механизма термического разрушения полимеров позволяет выбрать пути их стабилизации, а значит, и продления срока жизни изделий из полимеров. Преобладающим процессом является термическая деструкция полимеров, протекающая в зависимости от химической природы полимеров по механизму случайного разрыва макромолекул или деполимеризации. Повышение термостабильности полимеров связано с методами торможения этих реакций или синтеза более термостойких полимерных структур. [c.241]


    Для объяснения этого рассмотрим механизм деполимеризации (стр. 49). Как видно из схемы реакции, к образованию наиболее летучих продуктов — мономеров приводит реакция развития цепи продукты распада с более высоким молекулярным весом образуются по реакции передачи цепи. Очевидно, что реакция по схеме 3 протекает преимущественно у полимеров, не имеющих заместителей, например, у полиэтилена и у содержащих подвижный атом водорода. Полимеры, содержащие четвертичные атомы углерода, имеют меньшую возможность для передачи водорода и образуют мономеры по реакции развития цепи — по схеме 2. Ароматическая группа повышает активность полимерных радикалов. [c.87]

    Механизм реакции деполимеризации [c.111]

    Однако суммарную скорость деполимеризации определяет наиболее медленная стадия реакции — возникновение активных центров поэтому 50% макромолекул полиметилметакрилата (содержащих на конце цепи двойные связи) деполимеризуется с большей скоростью, чем остальные. Следовательно, на процесс термического расщепления влияет не только природа полимера, но и механизм его образования. [c.288]

    Механизм деполимеризации полистирола мало изучен. Экспериментально установлено, что скорость деструкции полистирола в присутствии перекиси бензоила изменяется в зависимости от содержания перекиси бензоила и продолжительности деструкции так же, как и скорость полимеризации стирола, что указывает на взаимную связь и близость механизмов полимеризации и деструкции. [c.288]

    Деполимеризация — это процесс, обратный полимеризации. По механизму деполимеризации деструктируются полимеры, например, такой структуры  [c.237]

    Какая разница между деструкцией и деполимеризацией Кяк влияет структура полимеро иа механизм реакции  [c.228]

    Поведение полисахаридов древесины при повышенных температурах в щелочной среде существенно отличается из-за появления принципиально иного механизма их деструкции, приводящего к отщеплению редуцирующих концевых звеньев, т.е. к деполимеризации, тогда как в кислой среде происходит только деградация полисахаридов. В щелочной среде деструкция полисахаридов древесины происходит в результате трех процессов деполимеризации, щелочного гидролиза и окислительной деструкции. Последняя обусловлена остаточным кислородом, неизбежно присутствующим как в реакционной среде, так и в пористой структуре древесины. [c.345]

    Схема 11.33. Механизм термической деполимеризации целлюлозы [c.357]


    Реакции деструкции полисахаридов также преимущественно протекают как гетеролитические реакции, направление которых и механизм зависят от состава варочного раствора и главным образом от pH среды. В кислой среде преобладают реакции статистической гидролитической деструкции, а в щелочной среде - деполимеризация, частично статистический щелочной гидролиз, а также статистическая окислительная деструкция (см. 11.11). [c.465]

    Алкилирование и полимеризация - реакции, противоположные крекингу, протекают по карбений ионному механизму. При температурах ниже 400 °С они доминируют над крекингом, а при высоких температурах равновесие смещается в сторону деалкилирования и деполимеризации. [c.462]

    Деполимеризация с образованием бензальдегида и формальдегида тем более интенсивна, чем выше температура. Она происходит, очевидно, по цепному механизму, при котором отрываются радикалы М—О—О до полного расщепления перекиси остальные продукты, по-видимому, образуются благодаря диспропорционированию радикала [c.351]

    Термическая деструкция — это распад полимера под действием повышенных температур. Общий механизм термораспада полимеров по цепному механизму можно описать на примере карбоцепного полимера. Обобщенная формула карбоцепного полимера может быть изображена в виде -СНг-СНХ-СНг-СНХ- где X — некий гетероатом или некая группа атомов. Распад полимера начинается со стадии инициирования, причем наиболее вероятен распад по закону случая. Тогда в результате разрыва макромолекулы будет получено два радикала (осколки молекул). Такие макрорадикалы могут в дальнейшем подвергаться деполимеризации с образованием мономеров. Распад будет проходить с развитием двух стадий — внутримолекулярной и межмолекулярной передачи цепи, а затем деструкции самой макромолекулы. Такой механизм распада — радикальный — встречается наиболее часто, однако существует еще несколько видов распада — ионный (так распадаются полиформальдегиды и др. гетероцепные молекулы) и молекулярный распады. [c.108]

    ИМИ механизмом, по которому предполагается, что ббльшая часть полирадикалов исчезает в результате реакций деполимеризации. Исследования Кросса позволили ему высказать предположение, что ббльшая часть полирадикалов прекращает рост посредством бимолекулярной реакции, в которой диспропорционирование преобладает над соединениьм. [c.174]

    Наконец, процесс полимеризации олефинов (в рас( матриваемых условиях) без сопутствующей ему деполимеризации или д( струкции также мало пригоден для объяснения механизма снижения содержания олефинов после очистки. Если бы в составе олефинов находились только амилены, а полимеризация прекращалась после образования димеров, то и тогда димеры не вошли в состав фракции с концом кипения 142—143 °С. По этим же сообра-5кениям можно исключить из рассмотрения и процесс алкилирования парафинов олефинами, тем более что протекание такого нроцесса в присутствии алюмосиликатных катализаторов еще не доказано. [c.108]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Энергетический кризис и постоянное внимание, уделяемое охране окружающей среды, вновь ставят на повестку дня проблему производства малосернистых топлив путем ожижения углей. В большинстве случаев процесс ожижения ведут при 400—500 °С в растворителе при зтом протекают реакции переноса водорода. Было высказано предположение [1], что первоначально в результате взаимодействия угля с молекулярным водородом идет реакция деалкилирования и образуются активные ненасыщенные продукты, которые затем либо стабилизируют (путем гидрирования), либо реполимеризуют. Если уголь подвергнуть пиролизу [2], то протекают реакции деполимеризации и диспропорционирования, ведущие к возникновению свободных радикалов. Найдено также [3],. что ожижение (или растворение) высоколетучего битуминозного угля в тетралине при 350—450 °С идет с участием реакции переноса водорода, подчиняющейся уравнению второго порядка, причем по мере ее протекания возрастает энергия активации процесса. Предполагается [4], что перенос водорода от тетралина к углю идет в соответствии со свободнорадикальным механизмом, включающим термическое расщепление молекул угля. [c.325]


    Образующееся соединение немедленно полимеризуется с образованием циклических продуктов и линейных высокомолекулярных соединений. Доказательством возможности образования полимеров по такому механизму служит возникновение при гидролизе алкил- или арилсилантриолов полимерных цепей, содержащих циклические звенья, а также результаты анализа продуктов деполимеризации полиорганосилоксанов, нагретых до 400° в этих продуктах найдены летучие низкомолекулярные трисил-оксаны типа (Н.,510),,. [c.481]

    Мазур A. K., Ел Якова Л. A. Кинетика образования глюкозы при деполимеризации полисахаридов ферментами с различными механизмами действия. — Мол. биол., 1983, т. 17, с. 126—137. [c.136]

    Ко второй группе реакций деструкции относятся цепные реакции деструкции, т. е. такие, при которых па один акт разрыва полимерной молекулы под действием какого-либо деструктирую-щего фактора приходится несколько актов распада цепей в других местах цепи. Как и цепная полимеризация, цепная деструкция может протекать по радикальному или ионному механизму. Инициирование цепной деструкции происходит под влиянием факторов, вызывающих образование радикалов или иоиов в цепях полимера (т. е. аналогично цепной полимеризации) под действием теплоты, света, излучений высоких энергий, а также химических веществ, распадающихся на свободные радикалы (пероксиды) или ионы. Цепная деполимеризация как частный случай цепной деструкции рассмотрена выше на примере деполимеризации полиметилметакрилата, содержащего двойные связи на концах макромолб1сул. Цепная деструкция протекает также при действии кислорода на полимеры (окислительная деструкция). [c.241]

    В связи с этим приобретает интерес модифицирование крахмала как путем тщательно дозированной клейстеризации и конденсации (альдегидные и фосфатные обработки), так и регулируемой деполимеризацией с помощью некоторых реагентов, которым приписывается каталитическое действие (например, с солями алюминия). Альдегидные и фосфатные обработки имеют сходный механизм. При обработке крахмала формальдегидом последний сначала образует комплексы кристаллическая решетка расширяется и создаются предпосылки для набухания и гидратации внутренних областей. Это сопровождается ростом вязкости, типичным для клейстеризации. Накопление альдегидных групп вызывает конформационные нарушения, препятствует спиралеобразованию амилозы и вызывает раскрытие ветвистых цепей. Это можно проследить по изменению окраски йодной реакции, постепенно обесцвечивающейся, что согласуется с ее механизмом по К. Фрейденбергу. На этой стадии становится заметной конденсационная функция альдегидов, обусловливающая образование поперечных метиленовйх мостиков между цепями. При возрастании числа поперечных связей структура становится жесткой, крахмал теряет способность набухать и растворяться, уменьшается вязкость и растет устойчивость к действию кислот, щелочей и нагреванию. Дозируя интенсивность обработки, можно задержать процесс на желательной промежуточной стадии. Подобному действию формальдегида благоприятствуют уже небольшие [c.175]

    Влияние строения полимера на механизм распада можно проиллюстрировать на примере циииловых полимеров. По. нме ры с третичными атомамн углерода склонны к реакциям деструкции по закону случая При замещении в этих полимерах водорода на труппу СНз и другие полимеры приобретают склонность к деполимеризации. При определенных условиях подИ мер может полностью деполимеризоваться до мономера. [c.192]

    Термическое воздействие выше 620 К приводит к деградации и деполимеризации полимера. Выход мономера в летучих продуктах реакции достигает порядка 20 30% (масс), а выход углеводородов С5 и выше - более 65-70% (масс) при скорости деполимеризации 2,5-3%> мин. (623 К) [12]. В числе получающихся наиболее важных, помимо изобутилена, продуктов следует отметить ди-, три-и тетрамеры изобутилена образующиеся при внутримолекулярной передаче цепи по свободно-радикальному механизму. [c.219]

    В свете этих данных существующее в литературе кажущееся несоответствие между невысоким выходом мономера при термической деструкции полиизобутилена и низкими значениями тепл от полимеризации, а следовательно и верхней Т ,р полршера, объясняется различием в механизме распада ПИБ (катионный или свободнорадикальный механизм пррт термическом воздействии). Возможность проведения процесса деструкции полимера по схеме катионной деполимеризации устраняет это несоответствие. [c.240]

    Гермическая деструкция является наиболее распространенным видом Деструкции полимеров, и протекает она в основном по свободнорадикальному механизму. Устойчивость полимеров к температуре и характер термораспада зависят от химического строения полимера, но во всех случаях на первых стадиях образуются макрорадикалы при разрыве наиболее слабых связей с возможной дальнейшей деполимеризацией [c.111]

    Процесс щелочной деполимеризации полисахаридов, протекающий по механизму 1,2-элиминирования (р-алкоксиэлиминирования), сопровождается целым комплексом реакций. Параллельно с деполимеризацией по такому же механизму происходит дегидратация редуцирующих концевых звеньев ((З-гидроксиэлиминирование), приводящая к стабилизации. В щелочной среде кроме того протекают реакции кето-енольной таутомери- [c.345]

    В щелочной среде происходит окисление полисахаридов по свободнорадикальному механизму. Целлюлоза, полученная при кислородно-щелочной варке, отличается повышенным содержанием карбонильных и карбоксильных групп. Образование карбонильных групп в положениях С(2), С(з) и С(й) инициирует статистическую деструкцию полисахаридных цепей по механизму реакции р-алкоксиэлимнннрования. Ионизация гидроксильной группы у С(2) (см. 16.3) благоприятствует появлению свободно-радикального центра у этого атома углерода и образованию затем карбонильной группы (схема 11.32). При расщепление гликозидной связи 1- 4 по реакции р-алкокси-элиминирования образуются редуцирующее и кередуцирующее концевые звенья. Появление редуцирующего концевого звена инициирует деполимеризацию, а нередуцирующее звено в форме дикетона либо перегруппировывается в концевое звено карбок-сифуранозида, либо окисляется далее с расщеплением связи С(2)-С(3) и образованием двух карбоксильных групп (см. 21.1). [c.352]

    Что касается других форм кремнезема, то Штобером [195] были выведены уравнения кинетики и равновесия процессов полимеризации и деполимеризации, объясняющие механизм растворения. [c.93]

    Силоксановые каучуки имеют 51—С-связь более прочную (355 кДж/моль), чем С—С-связь (344 кДж/моль). За счет полярности связи 51—С и экранирующего эффекта атома кремния деструкция полисилоксановых полимеров протекает при более высокой температуре, чем карбоцепных полимеров, по 51—0-связи (462 кДж/моль) и механизму деполимеризации полисилоксана с образованием в основном три-, тетра- и пентациклосилоксанов  [c.13]

    Заместители у одного и того же углеродного атома приводят к значительному напряжению в полимерной цепи и, следовательно, к снижению прочности С—С-связей и теплового эффекта полимеризации. Например, при переходе от метилакрилата к метилмет-акрилату (см. табл. 1.1) тепловой эффект полимернзации падает на 20Д мДж/кмоль, что увеличивает константу скорости деполимеризации при 250—260 °С на два порядка [49]. Поэтому выход мономеров при деполимеризации макромолекул с четвертичным углеродным атомом в цепи максимален [полиметакрилат, поли (а-метилстирол), полиметакрилонитрил]. При деструкции политетрафторэтилена из-за низкой подвижности атомов фтора в цепи передача цепи не происходит, поэтому распад идет преимущественно до мономера [49] . Следовательно, основными факторами, влия-ющ1им(и на механизм термодеструкции н выход мономера при пиролизе, являются теплота полимеризации мономера, наличие чет- [c.14]

    Завершая краткое обсуждение наиболее типичных свойств эндо- и экзодеполимераз, следует остановиться на рассмотрении механизма деструкции (деполимеризации) полисахаридов. Особенность процесса деструкции заключается в том, что полисахаридные субстраты предоставляют ферментам широкие возможности для способов атаки. Ферменты экзо- типа атакуют концевые участки полимера, последовательно (если нет боковых групп или дефектов мономерных звеньев) отщепляя мономеры или димеры. Можно предположить, что активный центр ферментов экзо- типа представляет собой кархйин , направленный вглубь белковой молекулы, архитектура которого не позволяет вместить более определенного числа мономерных звеньев субстрата. Активный центр ферментов эндотипа можно представить в виде длинной ложбины на поверхности белковой глобулы, вдоль которой и располагается субстрат (его концевые группы могут выходить за пределы активного центра или даже молекулы белка). [c.66]


Смотреть страницы где упоминается термин Деполимеризация механизм: [c.339]    [c.240]    [c.74]    [c.275]    [c.152]    [c.201]    [c.68]    [c.263]    [c.345]    [c.348]    [c.235]    [c.136]    [c.239]    [c.68]   
Акриловые полимеры (1969) -- [ c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Деполимеризация



© 2025 chem21.info Реклама на сайте