Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бария растворимость в ртути

    Все сульфаты растворимы в воде за исключением сульфатов бария, стронция, свинца, кальция и отчасти серебра и комплексной ртути. [c.580]

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]


    Ознакомившись с химическими свойствами некоторых анионов, можно перейти к их аналитической классификации, т. е. к разделению изученных анионов на отдельные аналитические группы. Для аналитических групп анионов характерны общие аналитические реакции — окислительно-восстановительные или обменные, т. е. одинаковое отношение к определенному химическому реактиву, называемому в этом случае групповым реактивом. Групповыми реактивами могут служить, например, растворимые соли бария, стронция, серебра, свинца, ртути (I) и (II) и некоторых других металлов, с которыми одни анионы образуют малорастворимые соли, а другие — нет. Групповым реактивом может быть какой-либо окислитель или восстановитель, меняющий окраску в процессе реакции. [c.212]

    Так как все хроматы растворимы в сильных кислотах, то для полного выделения хроматов необходимо нейтрализовать выделяющуюся кислоту. Хроматы бария и свинца желтого цвета, хроматы серебра и ртути (I) желто-красного цвета. [c.556]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]

    Вследствие огромной растворимости бария в его расплавленных солях, высокой температуры плавления последних, легкой окисляемости металла на воздухе и высокого электроотрицательного потенциала разряда ионов бария, получение его электролизом из расплавленных сред оказалось технически невозможным. Барий может быть получен отгонкой из амальгамы бария. Однако примеси ртути в металле резко ухудшают его свойства, как гетера. [c.324]

    N2, МНд и НдО. Авторы приводят уравнение, по которому можно вычислить значение lg щ1п (где 2 — число молей ртути в единице объема в состоянии насыщения при атмосферном давлении и данной температуре, щ — то же при разных давлениях газа) и графики, два из них показаны на рис, 9.35. Отношение 2/ 2 очень мало, т. е. растворимость ртути с давлением падает и, минимум, по-видимому, лежит в области очень высоких давлений. Наиболее резкое падение наблюдается для более тяжелых газов при 1000—2000 бар, что соответствует плотности 25— 30 моль/л. [c.316]


    Подразделение анионов на аналитические группы определяется отношением анионов к реагентам-осадителям — растворимым солям кальция, цинка, бария, серебра, ртути и свинца. [c.28]

    Действие растворимых хроматов на катионы металлов. При действии растворимых хроматов на смесь катионов в слабокислой среде в осадок переходят ионы бария, свинца, серебра и ртути(I) в виде хроматов  [c.556]

    Растворимость бария в ртути [c.166]

    При добавлении к водным растворам Ыа-КМЦ растворов солей таких металлов, как серебро, кальций, магний, барий, медь, ртуть, свинец, кадмий, олово, железо, алюминий, хром, уран, осаждаются соответствующие труднорастворимые соли. В некоторых случаях последние осаждаются только при определенных концентрациях растворов солей металлов и значениях pH системы. Медные, кадмиевые, никелевые и цинковые соли КМЦ растворимы в растворе аммиака, а алюминиевые, свинцовые, цинковые, хромовые — в растворе едкого натра. [c.172]

    В качестве коллекторов используют гидроксиды железа, алюминия и некоторых других катионов сульфиды кадмия, ртути и др. карбонат кальция, гидрокарбонат железа и др. сульфаты бария, кальция и др. малорастворимые органические соединения а- и -нафтолы, фенолфталеин, дифениламин, о-оксихинолин, метиловый оранжевый и др. Коллектор должен обладать достаточной избирательностью действия по отношению к осаждаемому микрокомпоненту, достаточной плотностью, способствующей быстрому оседанию микрокомпонента, хорошей растворимостью в кислотах или других растворителях, не должен мешать последующему определению микрокомпонента или, в крайнем случае, легко от него отделяться, что позволяет получить соосаждаемые элементы практически в чистом виде. Наиболее полно этим требованиям отвечают органические соосадители. Из нескольких возможных кол- [c.103]

    Осаждение серной кислотой и растворимыми сульфатами. В полумикропробирке к 1—2 каплям раствора хлорида бария добавляют по каплям раствор серной кислоты или сульфата натрия. Выделяется белый мелкокристаллический осадок сульфата бария, не растворимый в кислотах. Мешают катионы стронция, свинца, ртути (I), образующие плохорастворимые сульфаты. Сульфат бария в отличие от сульфата свинца не растворим в щелочах. В насыщенном растворе перманганата калия от серной кислоты выпадает фиолетовый осадок сульфата бария, который не обесцвечивается восстановителями. Фиолетовый осадок образуется потому, что перманганат калия изоморфен сульфату бария. Образуются смешанные кристаллы. Предельное разбавление 1 5-10 рС 5,7. Обнаруживаемый минимум 10 мкг. [c.173]

    Действие серной кислоты и растворимых сульфатов на катионы металлов. Растворимые сульфаты и серная кислота осаждают белые осадки сульфатов кальция, стронция, бария, свинца, серебра и ртути (I) (табл. 26.7). Сульфаты кальция, свинца, серебра и ртути заметно растворимы в воде, поэтому эти ионы не полностью осаждаются сульфатом или разбавленной серной кислотой. В концентрированной серной кислоте сульфаты частично растворяются с образованием кислых солей  [c.554]

    Действие растворимых оксалатов на катионы металлов, Растворимые оксалаты (калия, натрия и аммония) взаимодействуют с ионами кальция, стронция, бария, свинца, серебра и ртути с образованием труднорастворимых оксалатов. Кроме того, при действии оксалатов в осадок переходят также оксалаты редкоземельных элементов, тория, скандия. ОксалатЫ редкоземельных элементов выпадают в осадок в слабокислой среде, хотя, казалось бы, растворимость оксалатов должна быть меньше в нейтральной или щелоч- [c.556]

    Физические и химические свойства вещества также оказывают влияние на проявления токсических свойств. Например, сульфат бария при приеме внутрь не ядовит, так как нерастворим в воде и соляной кислоте желудка, а хлорид бария или другая растворимая соль бария при приеме внутрь ядовита при введении в желудок двухлористая ртуть (сулема) ядовита, однохлористая — не ядовита, так как не растворяется в жидкостях организма. При введении в организм имеют значение другие вещества, вместе с которыми вводится яд в организм. При этом действие одних ядов в присутствии других веществ может усиливаться (барбитураты и алкоголь) — проявляется синергизм, а других ядов — ослабляться (кислота и щелочь) — проявляется антагонизм. [c.30]

    По способности определяться методом АПН элементы в периодической системе можно сгруппировать на шести участках (рис. 1). На участке Д расположены 18 элементов, в число которых входят наиболее часто определяемые методом АПН элементы. По совокупности свойств и положению в таблице возможно определение и других элементов этой группы. На участке А расположено 11 щелочных и щелочноземельных металлов по совокупности физико-химических свойств и сходству между собой все эти 11 элементов должны определяться методом АПН. На участке Е VL В расположены 34 элемента, бесперспективных или мало перспективных для определения методом АПН. На участке Е расположены элементы, не способные давать амальгамы. На участке В расположено 12 элементов, большая часть из которых дает полярографические волны, но восстанавливаются они только до ионов низшей валентности, что препятствует их определению, а другая часть практически не растворима в ртути. На промежуточных участках В и Г расположены элементы, большинство из которых должно определяться методом АПН. Из сказанного выше следует, что вместо 9 элементов, определяемых данным методом до недавнего времени, можно с достаточной уверенностью предсказать возможность определения еще 22 элементов. Эти теоретические соображения уже частично получили экспериментальное подтверждение. Получены и изучены анодные зубцы галлия [5], германия [6, 7], бария, лития и калия [5]. [c.155]


    Основные научные работы относятся к химии и технологии платины, палладия и хрома. Первым в России исследовал платиновые металлы и получил (1797) ряд тройных комплексных солей платины — хлороплатинаты магния, бария и натрия. Изучал растворимость в воде хлороплатината аммония. Получил (1797) амальгаму платины восстановлением хлороплатината аммония ртутью. Разработал (1800) новый способ получения ковкой платины прокаливанием ее амальгамы. Предложил метод отделения платины от железа. Впервые получил (1797) и описал золь металлической ртути. Открыл (1800) хромовые квасцы, получил ряд окислов хрома. Исследовал сплавы платины с медью и серебром, сернистую платину, возглавлял (1799—1805) Закавказскую экспедицию, изучавшую минеральные богатства Кавказа и Закавказья, способствовал развитию горного дела в этом районе. [c.348]

    Соли по растворимости разделяют на две большие группы соли сильных кислот, как правило, растворяющиеся хорошо, исключение представляют сульфаты бария, стронция и свинца, хлориды, бромиды и иодиды свинца, серебра и одновалентной ртути соли слабых кислот, растворяющиеся плохо, за исключением солей лития, натрия, калия, рубидия и цезия, а также нитрптов и ацетатов. [c.160]

    Пример. Для идентификации ионов серебра реакцией с КзСгО в присутствии ряда других ионов [свинца, ртути (I), меди (II), стронция], также образующих цветные осадки с хромат-нонами, на полоску фильтровальной бумаги помещают каплю раствора хромата калия, затем каплю анализируемого раствора — появляется цветное пятно. При введении в центр пятна капли раствора аммиака хромат серебра растворяется с образованием аммиаката и передвигается к периферии пятна. Нерастворимый в аммиаке хромат свинца задерживается в центре. При смачивании всего пятна уксусной кислотой появляется буро-красное пятно хромата серебра вследствие разрушения аммиаката, а в центре — желтое пятно хромата свинца. Хроматы других элементов (кроме хромата бария) растворимы в уксусной кислоте, поэтому их окраска исчезает. [c.127]

    Первой серьезной экспериментальной проверкой уравнення Оствальда были работы Хюлетта [176—178]. Он исследовал растворимость сульфата бария, окиси ртути, гипса. В [176] Хюлетт поставил своей целью определить, действительно ли растворимость малых частиц гипса больше по сравнению с растворимостью достаточно больших кристаллов, а также действительно ли растворимость разных граней кристалла различна. Хюлетт использовал метод измерения проводимости раствора, как самый точный и простой для определения концентрации. Он нашел, что раствор гипса, сатурированный при 25° С и содержащий 2,080 г aS04 на 1 л (или 15 ммоль/л), является равновесным для частиц радиуса г — = 1 ti.. Размер частиц определялся под оптическим микроскопом. Если этот раствор смешать с тонкоизмельченным в агатовой ступке порошком гипса, то концентрация раствора быстро возрастает до максимума (в одном опыте достигает 2,542 г/л), а затем медленно уменьшается и через несколько суток достигает первоначальной концентрации (2,080 г/л). [c.28]

    Присутствие хлоридов, сульфатов, фосфатов в титруемом растворе исключается, так как эти ионы также образуют малорастворимые осадки с закисной ртутью. Равным образом исключается применение органических кислот — винной, щавелевой или лимонной, которые иногда применяются для связывания вольфрама (VI) в комплексное соединение с тем, чтобы в его.присутствии определять молибден (например, при колориметрических определениях) с этими кислотами ртуть также образует осадки. Что касается катионов, то их влияние на определение молибдена и вольфрама обусловлено растворимостью соответствующих вольфраматов и мо-либдатов в данной среде. Так, например, в присутствии бария определение вольфрама делается практически невозможным, так как вольфрамат бария отличается весьма малой растворимостью в разбавленных кислотах и, следовательно, увлечет вольфрам в осадок до титрования, а более сильное подкисление приведет, как уже упоминалось, к растворению вольфрамата ртути. [c.193]

    Экспериментально подтвердить уравнения (6-42) и (6-43) оказалось необычайно трудно. Хьюлетт - определял растворимость сульфата бария, окиси ртути и гипса (СаЗО.) 2НгО) с различным размером частиц путем измельчения кристаллов в порошок и измерения электропроводности суспензий. Оказалось, что растворимость всех этих веществ тем выше, чем больше степень измельчения. При радиусе частиц гипса 0,4 мк растворимость на 19% выше обычной. После получения свеже-осажденного сульфата бария его концентрация в растворе постепенно падала от начальной величины 4,6 до конечной 2,9 мг л  [c.142]

    Известно, что большинство солей сильных кислот (азотной, серной, соляной) хорошо растворяется в воде. Исключениями являются некоторые сульфаты (бария, стронция, кальция, свинца и закисной ртути), а также некоторые хлориды (серебра, закисной ртути и свинца). Часть этих соединений используют в количественном анализе для осаждения соответствующих ионов применение их описано в практической части. Однако большинство труднорастворимых соединений являются солями слабых кислот, кроме того, трудно растворимы также гидроокиси металлов. Поэтому для осаждения катионов в большинстве случаев их переводят в гидроокиси, а также в соли слабых неорганических или органических кислот. Из неорганических соединений наиболее широко используют сульфиды и гидроокиси металлов. [c.92]

    Все ядовитые вещества хранят в хорошо закупоренной посуде с надписью на этикетке Яд в отдельном, запирающимся на замок шкафу. К таким веществам относятся цианиды, соли мышьяка, хлорид ртути (П), все растворимые соли бария, сероуглерод, фосфор, калий сурьмяновиннокислый (рвотный камень). [c.371]

    Хотя растворимость хлорида серебра в растворах ртути(II) была изучена еще в начале XX столетия [70], этот метод мало используется. Мани и Дэвис [67] рассчитали значение РгДляокса-лата марганца (II) по измерениям растворимости оксалата бария в растворах хлорида марганца (II). Присутствием первого оксалатного комплекса марганца и комплексов хлорида бария пренебрегали. Подобным образом для системы иодата магния [c.240]

    Следует подчеркнуть, что правило Семенченко не является строго количественной закономерностью. В тех случаях, когда растворитель образует твердый раствор, содержащий растворенное вещество в достаточно высокой концентрации, а также в тех случаях, когда между растворителем и растворенным веществом существует химическое взаимодействие, растворимость резко возрастает. Поэтому, хотя качественная закономерность, связывающая растворимость с диэлектрической постоянной растворителя, в большинстве случаев проявляется вполне ясно, нередки отдельные отклонения. Так, например, растворимость борной кислоты в амиловом спирте выше, чем в ацетоне, тогда как при строгом выполнении закономерности должно было бы быть наоборот, далее резко выскакивает точка, соответствующая растворимости в 9В,5 / о-пой муравьиной кислоте, для борной кислоты и янтарной кислоты. Образование молекулярных соединений бромистой ртути и цианистой ртути с пиридином приводит к резкому повышению растворимости, в результате чего точки, соответствующие этим растворам, ложатся значительно выше кривой Семенченко. То же самое относится к камфоре [13] и, повидпмому, к хлорнокислому барию [14]. О применимости теоремы Больцмана при рассмотрении фазовых равновесий. Иногда в литературе встречаются попытки теоретического анализа проблемы растворимости при помощи так называемой е-теоремы Больцмана в. следующей форме  [c.468]

    Перекись бария. ВаО а образует белый, довольно трудно растворимый в воде порошок, совершенно нерастворимый в спирте и эфире. С водой перекись бария дает гидрат ВаОг-ЗНаО с Н2О2 также дает соединение ВаОг-НгОг. Водный раствор перекиси бария действует на соли двухвалентного железа как окислитель, а на. гексацианоферрат(П1)калия Ks[Fe( N)e] и также на многие другие соли тяжелых металлов, наоборот, как восстановитель. Так, с хлоридом ртути (сулемой) она реагирует по уравнению [c.297]

    Медные соли аминокислот получают при нагревании аминокислот до кипения с избытком Си (ОН) 2 и СиСсЗз. Кроме меди, аминокислоты дают характерные соли с ртутью, барием, серебром и рядом других металлов. Реакции аминокислот с тяжелыми металлами использовались при выделении и определении аминокислот, так как соли отдельных аминокислот характеризуются различной растворимостью и различаются по ряду других свойств. [c.189]

    Хромат бария легко растворимая соль, и поэтому представляет интерес в целях упрощения анализа разработать метод полярографирования свинца в присутствии хрома. При первых же опытах полярографирования РЬ в присутствии шестивалентного хрома оказалось, что он окисляет ртуть и определение в этих условиях невозможно. Хром необходимо предварительно восстанавливать, что и производилось выпариванием солянокислого раствора в присутствии спирта. Результаты полярографирования получились неудовлетворительными, так как потенциалы восстановления трехвалентного хрома и свинца близки и соответствующие волны сливаются. Для раздвижения волн была применена сегнетова соль. При определенной концентрации сегнетовой соли и HNO3 волна свинца получается нормальной, но сдвинутой по оси абсцисс. [c.194]

    Большинство сульфатов растворимо в воде. Трудно растворимыми являются сульфаты кальция, стронция, бария, свинца н закисной ртути. Анионы серной кислоты бесцветны. Все ее солн, образованные неокрашенными катионами, тоже бесцветны. [c.367]

    В данном случае испытуемое соединение растворимо в воде, следовательно, оно не относится к числу нерастворимых в воде фосфатов, арсенитов, силикатов, оксалатов, карбонатов, гидроокисей, сульфидов (за исключением соответствующих солей щелочных и щелочноземельных металлов и аммония), хлоридов подгруппы соляной кислоты, сульфатов бария, стронция, кальция, свинца и закисной ртути, цианидов, образованных катионами П1 и IV аналитических групп, кроме цианида ртути (II) и т.д. [c.422]


Смотреть страницы где упоминается термин Бария растворимость в ртути: [c.221]    [c.233]    [c.183]    [c.17]    [c.203]    [c.269]    [c.551]    [c.335]    [c.178]    [c.149]    [c.127]    [c.144]    [c.314]    [c.325]    [c.484]    [c.30]   
Производство хлора и каустической соды (1966) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Бария растворимость



© 2025 chem21.info Реклама на сайте