Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метильные группы, ЯМР-спектроскопия

    ЯМР [69], в соответствии с которыми насыщенными являются 56,5% атомов С, причем 10,6% содержатся в метильных, 31,2% — в метиленовых и 5,1% — в метинных группах, а 9,6% составляют четвертичные С-атомы. 2,6% ато.мов С входило в состав метильных групп, непосредственно связанных с ароматическими ядрами. Не замещенными были примерно 30% всех ароматических атомов С, остальные занимали конденсированные положения или были замещены. ИК спектроскопией асфальтенов из некоторых нефтей Западной Сибири и Поволжья [220] установлено несколько более высокое содержание углеродных атомов в метильных группах (14—18%). [c.194]


    Если на ранних этапах этим методом определяли лишь среднее количество циклов в исследуемой смеси нафтенов, то теперь сюда прибавилось определение количества метильных и метиленовых групп методами ИК-спектроскопии, дифференциация метильных групп на группы, связанные и не связанные с циклами, определение длины алкильных заместителей в цикланах. [c.362]

    Более детальное изучение строения молекул асфальтенов удалось провести, используя методы ПМР, ЯМР и ИК-спектроскопии. С помощью комплекса этих методов было установлено следующее для целого ряда асфальтенов, выдел< нных из отечественных и зарубежных нефтей, характерно, что около половины атомов водорода находится в метиленовых и метиновых группах, 15—22% приходится на метильные группы и лишь 8—10% входит в состав ароматических структур. [c.213]

    В ИК-спектрах полиэтиленов, полученных различными способами, наблюдаются различия, которые являются результатом отклонения структуры полиэтилена от линейной цепи —СН2— (рис. 12.4). На этом основано аналитическое приложение ИК-спектроскопии к определению степени ненасыщенности, концентрации метильных групп и боковых ответвлений в полиэтиленах [c.193]

    Прямые методы измерения параметров ДЦР полиэтилена, как и большинства полимеров, отсутствуют. Метод ИК-спектроскопии дает сведения об общем содержании метильных групп, и поскольку кинетике полимеризации этилена соответствует гораздо более частое возникновение в макромолекуле коротких ветвей по сравнению с длинными, то данные ИК-спектроскопии обычно трактуют как содержание коротких ветвей. По данным ЯМР-спектроскопии можно определить лишь наиболее короткие из длинных ветвей, т.е. ветви, возникшие в результате межмолекулярной передачи цепи на полимер, но малые по сравнению со средней длиной длинной ветви. [c.124]

    Еще одна область возможных применений спектроскопии ядерного магнитного резонанса основана на том, что спектры ЯМР многих соединений зависят от температуры. С таким случаем мы сталкиваемся при изучении спектра диметилформамида. При 40°С в нем наблюдается дублетный резонансный сигнал от протонов метильных групп, а при 160°С в спектре виден только синглет (рис. 3). Причина этих различий в спектрах при двух температурах — высокий барьер вращения вокруг связи карбонильный атом углерода — азот (87,8 кДж/моль), которая обладает частично двойным характером, что можно представить резонансной формой а. Поэтому две метильные [c.13]

    Химический сдвиг в спектроскопии ЯМР дает важные сведения, которые, подобно групповым частотам в ИК-спектроско-пии, используются для определения строения неизвестных веществ. На рис. II. 7 показаны характеристические области поглощения для наиболее важных типов протонов, встречающихся в органических молекулах. Можно сделать следующие общие заключения- Для протонов алифатических связей С—Н экранирование уменьшается в ряду СНз > СНг > СН. Так, протоны Метильных групп у насыщенного атома углерода дают сигнал [c.37]


    Применение спектроскопии ЯМР привело также к более глубокому пониманию механизма протонных сдвигов в карбокатионах. Так, гексаметилбензол во фтористоводородной кислоте образует катионный а-комплекс. Комплексы этого типа рассматриваются как интермедиаты при ароматическом электро-фильном замещении. Спектр ЯМР этого катиона (174) при комнатной температуре указывает на быструю миграцию присоединившегося протона по периметру кольца (рис. VIH.17). В нем наблюдается дублет (/ = 2,1 Гц) для метильных групп и мультиплет протона группы СН. Вследствие быстрого обмена этот протон эффективно расщепляется на всех восемнадцати [c.289]

    Унификация спектров ЯМР достигается выбором единой для данного типа ядер нулевой (эталонной) линии и направления отсчета положительных и отрицательных значений химических сдвигов. В спектроскопии ПМР и ЯМР отсчет химических сдвигов ведется от сигнала Н или метильных групп тетраметилсилана линии, находящиеся в более слабом поле, имеют положительные химические сдвиги, в более сильном-отрицательные (так называемая 5-шкала химических сдвигов). В табл. 5.2 [c.283]

    В ЯМР-спектроскопии интегральные интенсивности сигналов (т.е. площади под сигналами) пропорциональны числу магнитных ядер в образце. Так, в спектре этанола (рис. 5.28) соотношение интегральных интенсивностей линий, или просто интегралов, протонов метиленовой, гидроксильной и метильной групп составляет 2 1 3 в соответствии с числом протонов в каждой группе. [c.306]

    Структура алифатических фрагментов. Из приведенных данных по распределению углерода в метильных группах можно заключить, что на гипотетическую молекулу асфальтенов, состоящую из 1000 атомов углерода, приходится не более 7-12 алкильных заместителей (табл. 1.45). Эта величина оказывается несколько выше, чем содержание углерода в метильных группах (6-9 %), полученное на основании ИК-спектроскопии. Такое расхождение объясняется тем, что при определении числа метильных групп по ПМР-спектрам исключаются метильные группы, находящиеся в а-положении к ароматическим кольцам. [c.97]

    По данным ИК-спектроскопии при диспергировании и окислении углей увеличивается количество спиртовых и метиленовых групп и одновременно уменьшается количество эфирных и метильных групп. Очевидно, обработка угля в гидродинамическом роторно-пульсационном аппарате приводит к разрыву свя- [c.288]

    С помощью МБ-спектроскопии были исследованы некоторые системы со спиновым равновесием между высоко- и низкоспиновыми комплексами железа(П). Типичными являются результаты [20], полученные для гексадентатного лиганда 4-[(6-Я)-2-пиридил]-3-азабутенил замина. Спектры соединений с двумя или тремя метильными группами К характеризуют при 77 К низкоспиновое железо (II) (М1), тогда как при 294 К большой изомерный сдвиг и большое квадрупольное расщепление характерны для высокоспинового железа (П) ( Т2). При промежуточных температурах в спектре наблюдаются обе формы. Эти данные говорят [c.302]

    Попытки применения карбамидной обработки технического нефтяного парафина с целью разделения его на изомеры нормального и разветвленного строения пока не увенчались большим успехом. Это обусловлено тем, что комплексы с карбамидом образуют не только парафины нормального строения, но и разветвленные структуры, у которых имеются достаточно длинные неразветвленные цепи (содержащие восемь атомов углерода и больше). Детальное исследование с применением инфракрасной спектроскопии [86] строения разветвленных форм, которые содержатся в техническом парафине, выделенном из грозненской парафипистой нефти, показало, что в них преобладают мало разветвленные парафиновые структуры, которые содержат всего 1 или 2 метильные группы, сильно сдвинутые на концы длинных углеродных цепей. Парафинов гибридного типа, т. е. содержащих в качестве заместителей циклопарафиновые кольца, в этом техническом продукте методом инфракрасной спектроскопии установить не удалось. Если они и содержатся в этом парафине, то, по-видимому, в небольших количествах (несколько процентов). [c.67]

    Расчеты с помощью ЭВМ проводятся для ряда значений каждого из плавающих параметров , их значения считаются запрещенными, если любой рассчитанный результат получается отрицательным. Интегральный структурный анализ, введенный Хиршем и Альтгельтом, позволяет рассчитывать около 40 средних структурных параметров для сложных органических смесей типа тяжелых нефтяных остатков. Этот метод использует эмпирические зависимости между структурными элементами и плотностью, что является его недостатком. Однако методическая разработка оказалась плодотворной и ряд авторов использовали ее, дополняя и вводя новые исходные данные [386, 387]. Например, в работе [387] вводятся новые экспериментальные данные — отношёниесо-. держания общего водорода к углероду в метильных и метиленовых группах, определенных ИК-спектроскопией, а также содержание углерода в циклических структурах, найденное расчетным путем по эмпирической формуле Вильямсона на основе данных ПМР. В другой работе [386] вводят отношение содержания метиленовых и метильных групп и содержание углерода в ареновых структурах. Введение новой информации увеличивает точность метода и позволяет рассчитывать большее число средних структурных параметров. [c.175]


    Изомеризация под влиянием катализаторов.— Под влиянием катализаторов реакции Фриделя—Крафтса (AI I3, АШгз, НР-ВРз) ксилолы могут претерпевать как диспропорционирование в толуол и триметилбензол, так и изомеризацию. Однако подобрав соответствующие условия, можно подавить диспропорционирование и количественно изучить процесс изомеризации. В одном из исследований Аллена (1959) положение равновесия для каждого из ксилолов достигалось при 50 С в растворе толуола действием 5 мол. % хлористого алюминия в присутствии хлористого водорода. Методом газовой хроматографии и ИК-спектроскопии была установлена следующая равновесная концентрация мета-изомер — 62%, пара-изомер — 21%, ортоизомер— 17%. Эти данные свидетельствуют о том, что о- и -ксилолы не превращаются друг в друга и, следовательно, изомеризация протекает за счет внутримолек) лярного 1,2-перемещения метильной группы с ее парой электронов. о-Ксилол, присоединяя протон, может образовать третичный арониевый ион I, резонансный с вторичным ионом И, который в результате 1,2-перемещения метильной группы (П1) и отщепления протона превращается в ж-ксилол. л-Ксилол образует вторичный ион V, при 1,2-сдвиге дающий ион IV, который находится в резонансе с ионом III, переходящим в м-ксшол. [c.172]

    Многие экспериментальные значения высоты потенциального барьера были получены С использованием методов микроволновой спектроскопии (изучение спектров поглощения молекул газа в области длин волн около 1 см). Эти значения (13,8 кДж-моль- для НзС—СН Р и 13,3 кДж-моль- для НзС—СНРг) оказались близкими к значениям для этана соответствующие значения для НзС—СН2С1 и НзС—СНзВг несколько выше, причем каждое из них равно 14,9 кДж-моль . Устойчивой формой молекулы во всех этих случаях является шахматная конформация (связи находятся с противоположных сторон оси С—С, как показано на рис. 7.5). Неустойчивая форма, получаемая поворотом метильной группы на 60° вокруг связи С—С, называется заслоненной конформацией. [c.187]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    При образовании продуктов уплотнения из кумола на неспецифических для крекинга и специфических катализаторах при температуре ниже бОО"" С, как показано в работах [14, 25, 26], образуются поликумолы без отщепления водорода, имеющие в зависимости от условий и природы катализатора различное строение (линейное и разветвленное) при более высоких температурах получаются продукты дегидро- и деметаноконденсации. Строение и состав таких продуктов уплотнения были доказаны [9, 10, 25, 26] по составу продуктов диспропорционирования и изомеризации кумола, наличию в продуктах уплотнения легкоподвижных метильных групп, способных алкилировать нафталин, присутствию в продуктах уплотнения характерных функциональных групп и фрагментов, устанавливаемых методами функционального анализа, спектроскопии и т. д. [c.193]

    Четыре гетероциклических кольца корринов образуются из четырех молекул порфобилиногена, которые, в свою очередь, синтезируются из восьми молекул АЛК. Следовательно, в общем случае восемь углеродных атомов корринового ядра могли бы образоваться из атомов С-5 молекул АЛК (схема 32). Положение семи из них было определено Шеминым и сотр. [115] посредством включения [5- С]АЛК в витамин В12 оно вытекает также из факта участия уропорфириногена П1 в построении корринового кольца. Шемин также обратил внимание на возможность того, что восьмой углеродный атом из С-5 АЛК, который в порфиринах (и порфири-ногенах) занимает б-положение, в корринах (80) может стать метильной группой при С-1 (выделена жирным шрифтом). Однако из-за отсутствия соответствующих методов деградации, с помощью которых можно было бы специфически изолировать эту метильную группу, в то время не представлялось возможным подтвердить гипотезу Шемина. Развитие в конце 60-х годов метода спектроскопии ЯМР С с использованием преобразования Фурье (Фурье-спектроскопия ЯМР С или, сокращенно, ФС ЯМР С), а также разработка улучшенных способов включения меченых предшественников в витамин В12 без их разбавления эндогенными субстратами, позволили решить эту проблему почти одновременно в двух лабораториях [122,123]. [c.673]

    Применение ИК-спектроскопии для структурно-групповогс анализа высококипящих (выше 200 °С) алкано-циклоалкановых фракций позволяет получать количественные характеристики структурных фрагментов гипотетической средней молекулы. По характеристическим полосам поглощения в области 720— 780 см рассчитывают среднее содержание метиленовых групп в алкильных цепях различной длины (этильных, пропильных радикалах и т. д.). По интегральным интенсивностям полос поглощения 1378 и 1366 см можно приблизительно определить содержание изолированных и геминальных (т. е. находящихся при одном углеродном атоме) метильных групп. Однако точность этих определений невелика, так как в расчетах используют усредненные значения коэффициентов погашения для различных углеводородов. По полученным данным можно приблизительно оценить степень разветвленности алифатических цепей. [c.142]

    Строение значительного числа изопропилиденовых производных сахаров было доказано химическими методами, в основе которых лсх<али частичный гидролиз и метилирование свободных гидроксильных група с последующей идентификацией частично метилированных сахаров. В настоящее время доказательство строения изопропилиденовых производных сахаров может быть осуществлено значительно проще с помощью физико-химических методов анализа, главным образом ЯМР-спектроскопии В ЯМР-спектрах изопропилиденовых производных сахаров сигналы метильных протонов в диоксолановом цикле не расщепляются и находятся в интервале г = 8,0—9,0. Химический сдвиг протонов, метильной группы зависит от природы диоксоланового цикла в связи с. этим различают три типа метильных групп метильную группу изопропилиденовой группировки, находящуюся в i(w -положении по отношению к двум, водородным атомам, называют а (СН ) группу, находящуюся в цис-положении по отношению к радикалу и водороду, —р (СНр), а группу,, находящуюся в положении по отношению к двум углеродсодержащим заместителям, —у (СН ). [c.175]

    Как свободные радикалы, так и молекулы реагентов могут диффундировать с поверхности в объем. Теми же авторами показано, что появлению формальдегида предшествует образование некоторого неидентифицированного соединения, четко проявляющегося однако на ЯМР-спектрах и хроматограммах. В работах [45, 46] методом масс-спектроскопии также обнаружены свободные радикалы в продуктах взаимодействия метанола с серебром в присутствии кислорода при 27и 677 °С, но при глубоком вакууме (1,33 Па). Однако в отличие от работ [43, 44] считается, что эти радикалы не содержат метильных групп. [c.37]

    Для определения содержания углерода в ароматических и насыщенных фрагментах используется также ИК-спектроско-пия. По данным ИК-спектроскопии (табл. 1.44) в метильных группах содержится больше атомов углерода, чем по данным ПМР, а содержание в метиновых группах ниже, как и в случае ЯМР ( С). Это расхождение объясняется тем, что при анализе ИК-спектров устанавливается содержание всех метильных и метиленовых групп, включая а-алкильные группы. Сопоставление данных ИК-спектроскопии и ПМР позволяет определить количество групп, находящихся в а-положении к ареновому кольцу. Данные по распределению углерода в ас-фальтенах и смолах подтверждают положение о том, что они содержат одинаковые структурные группы. [c.95]

    С целью проверки указанного предположения был изучен методом инфракрасной спектроскопии процесс сорбции пропилена на окиси и закиси меди. Установлено (рис. 4), что в случае окиси меди происходит смещение в сторону меныппх частот почти исключительно только полосы, характеризующей колебания связи С = С(1670—1640 смГ )-, это говорит о деформации связи. При использовании закиси меди одновременно смещается в сторону меньших частот (на 20—30 смГ ) и полоса колебании связи С—Н (1468—1396 см" ) в метильной группе углеводорода. Эти данные подтверждают высказанные выше предположения о разной роли окиси и закиси меди при окисленриг углеводородов. [c.157]

    Нарушения структуры полиэтилена — длинные и ко1роткие боковые цепи и олефиновая ненасыщенность — встречаются сравнительно редко (доля их не превышает 1—2%), но они сильно влияют на физические свойства полимера. Традиционным методом их определения являлась ИК-спектроскопия [1]. Однако ЯМР-спектроскопия, по-видимому, столь же мощный метод и обладает еще тем преимуществом, что дает возможность находить концентрации непосредственно, не определяя коэффициенты экстинкции. Като и Нисиока [2] показали, что метильные группы (т. е. концы боковых цепей) могут быть обнаружены в полиэтилене низкой плотности с помощью накопления 400 спектров на накопителе САТ (см. разд. 1.18.3). Как и ожидалось, наблюдение этих сигналов значи- [c.143]


Смотреть страницы где упоминается термин Метильные группы, ЯМР-спектроскопия: [c.312]    [c.332]    [c.42]    [c.217]    [c.169]    [c.229]    [c.137]    [c.80]    [c.504]    [c.208]    [c.13]    [c.328]    [c.421]    [c.193]    [c.314]    [c.246]    [c.359]    [c.360]    [c.345]    [c.504]    [c.21]    [c.109]    [c.386]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.222 , c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Метильная группа

спектроскопия групп



© 2025 chem21.info Реклама на сайте