Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры изотропные

    Следует отметить, что одна полимерная цепь может проходить через несколько таких флуктуационных пачек. В результате структура полимера в аморфном состоянии может быть представлена изотропной флуктуационной сеткой, узлами которой являются домены, пачки макромолекул. Такая сетка весьма лабильна. Под влиянием внешних силовых полей, а также при изменении температуры ее физические свойства - прочность, деформируемость - будут изменяться, причем доля вынужденной эластичности при повышении температуры возрастает. [c.136]


    Полимер Цепная молекула Ориентированное волокно I7j Изотропное твердое тело  [c.16]

    Уменьшение наклона кривой а = (г) по мере увеличения степени растяжения связано с началом развития в образце вынужденно-эластической деформации. С возрастанием напряжения скорость вынужденно-эластической деформации быстро увеличивается. В точке максимума на кривой а = / (е) скорость вынужденноэластической деформации становится равной скорости растяжения, задаваемой прибором. Напряжение, при котором это наблюдается, называют пределом вынужденной эластичности (ств). По достижении Ов происходит резкое сужение образца — образование так называемой шейки . При переходе в шейку полимер ориентируется и его свойства по сравнению со свойствами исходного материала существенно изменяются. Ориентированный материал обладает в стеклообразном состоянии более высокими значениями модуля упругости и предела вынужденной эластичности в направлении ориентации, чем изотропный материал. Когда при образовании шейки достигается степень вытяжки, обеспечивающая заметное возрастание 0в, развитие вынужденно-эластической деформации в шейке резко замедляется. Процесс деформации продолжается у границ шейки, где сечение образца уменьшено, т. е. там, где напряжение повышено, а упрочнение еще мало. На пологом участке кривой растяжения (участок II) напряжение при удлинении остается практически постоянным. Поперечное сечение шейки изменяется мало, и удлинение образца происходит, главным образом, за счет вынужденной эластической деформации материала у границ шейки. Длина шейки при этом увеличивается. Растяжение с образованием шейки и дальнейшим ее распространением является особенностью твердых полимеров. [c.157]

    Если структура аморфных полимеров изотропна и мы, рассчитав один вид деформации (например, сдвиг), можем рассчитать другие виды деформации, то в случае ориентирован- [c.189]

    Если Ь/а велико, Д( см [см. уравнение (2.26)] становится положительным. Это связано с затруднениями, обусловленными заполнением объема раствора полимерными цепями, построенными из достаточно больщих палочкообразных сегментов. Ранее было показано, что при увеличении концентрации таких жесткоцепных полимеров вероятность образования изотропного раствора уменьшается. Когда раствор изотропный, то/> (1 - е ), а когда он анизотропный, то / < (1 - е ). При Ь/а min значение jo стремится к/ р = 0,63. При /< 0,63 термодинамически более вероятным будет анизотропное состояние с параллельно расположенными цепями, т. е. с сохранением ориентационного порядка. Значение / у возрастает с температурой, и при определенной температуре происходит скачкообразный переход из упорядоченного состояния в неупорядоченное (изотропное). Это наблюдается при /q = 0,63. Переход из упорядоченного состояния в изотропное возможен при одновременной дезориентации структурных элементов и является фазовым переходом первого рода. [c.151]


    Получение пористых полимерных мембран, пригодных для разделения газовых смесей, не отличается от обычных и хорошо известных в литературе способов создания ультра- и микро-фильтрационных мембран [3—5]. Мембрана образуется из раствора полимера в результате частичного испарения летучих растворителей и разделения системы на фазы при охлаждении. Возникает губчатая структура пор, размеры которых можно направленно менять в широких пределах (10- —10 м). Полимерные пористые мембраны изготовляют в форме пленок и волокон с изотропной и ассиметричной структурой пор [6, 7]. [c.39]

    Макромолекулы характеризуются резко выраженной анизотропией формы. Вследствие этого полимерные материалы могут быть изотропными и ориентированными. Именно это обстоятельство предопределяет особенности морфологии волокон и пленок. Эти полимерные материалы являются не монолитными структурами, а преимущественно ориентированными ажурными конструкциями, распределение пор и пустот в которых предопределяет многие их эксплуатационные свойства. Возможности создания такой архитектоники волокнистых и пленочных материалов непосредственно связаны с молекулярными характеристиками полимеров. [c.15]

    Если к изотропному полимеру приложить растягивающее усилие, то макромолекулы вследствие анизотропии своей формы и гибкости ориентируются в направлении действия силового поля. При этом, как правило, они более плотно упаковываются, в результате чего суммарные силы межмолекулярного сцепления между ними возрастают. Это приводит к уменьщению подвижности макромолекул. [c.89]

    ПОЛНОСТЬЮ анизотропный раствор (ф2 - концентрация полимера, Ь/а - отношение содержаний изотропной и анизотропной фаз) [c.153]

    Если параметр взаимодействия Х1 = О, то соотношение сосуществующих в растворе изотропной и анизотропной фаз (О < 1,56. Для гибко цепных полимеров распад раствора на две фазы происходит при х 0,50, для жесткоцепных - при XI = 0,25. Объемная доля полимера в изотропной фазе очень мала и составляет около 3 10 , а в анизотропной - 0,963. [c.152]

    Рис 3.15. Равновесие изотропной и анизотропной фаз в растворах полимеров различной жесткости  [c.153]

    II. В высокочастотной области, соответствующей колебательным движениям малых и даже очень малых групп (атомы водорода, отдельные электроны), зондирование структуры основано на несколько ином принципе. Возникновение организованных, в первую очередь кристаллических, структур сразу же резко ограничивает подвижность наблюдаемых при соответствующей частоте групп. По аналогии с температурными искажениями релаксационного спектра это должно приводить к смещению или размазыванию резонансных линий. В радиочастотном диапазоне это может быть расширение линий протонного магнитного резонанса при введении в полимер. электронного парамагнитного зонда — какого-либо устойчивого свободного радикала— характер его ЭПР-сигнала меняется в зависимости от плотности окружения, т. е. от того, находится ли он в кристаллической, жидкокристаллической или изотропной (аморфной) области. В оптическом диапазоне по тем же причинам могут изменяться форма, положение и интенсивность полос колебательных спектров (часто приходится, например, встречаться с термином кристаллическая полоса ). Можно вводить в-полимер электронный зонд— люминофор (например, антрацен) и по изменениям спектральных характеристик поляризованной люминесценции снова судить о подвижности или плотности тех участков, в которых расположен люминофор. [c.54]

    Предыдущие рассмотрения применимы к однородным изотропным материалам, т. е. к аморфным [61, 198, 200] и частично кристаллическим полимерам со слабо развитой микроструктурой [130]. В этих материалах направленность разрушения более или менее определяется полем локальных напряжений. Во всяком случае, судя по морфологии поверхности разрушения, ничего нельзя сказать о ее микроструктуре. Это не исключает существования определенной глобулярной микроструктуры (гл. 2, разд. 2.1.3), которую можно выявить путем ионного травления [132, 208]. Однако для полимеров с явно выраженной микроструктурой, обусловленной присутствием кристаллитов с вытянутыми цепями и сферолитов, отчетливо выявляются особенности поверхности разрушения. В таких полимерах сопротивление материала распространению трещины сильно зависит от ориентации плоскости разрушения относительно элемента структуры. [c.393]

    По определению тензор я называют полным тензором напряжений, а т — просто тензором напряжений. Ясно, что п J а Хи (1 =/> /), а Пц та Р + Хц, И изотропное давление Р входит в качестве составляющей в полные нормальные напряжения. Когда течения нет, в состоянии равновесия, Р представляет собой термодинамическое давление, которое для чистой жидкости зависит от плотности и температуры Р = Я (р, Т). При таком определении Р возникают две трудности. Первая состоит в том, что при течении жидкость находится в неравновесном состоянии, и неясно, является ли давление, измеряемое при этом, тем же давлением, что термодинамическое. Вторая трудность связана с допущением о несжимаемости жидкости (это допущение часто применяется при решении задач, связанных с переработкой полимеров). В этом случае значение Р определено только с точностью до произвольной постоянной. Это, однако, не вносит затруднений в решение задач, поскольку необходимо знать не само давление, а только его градиент, [c.101]


    В этой главе рассматривается наиболее интересное и нетривиальное приложение формальной термодинамики к эластоме-р а м, т. е. полимерам, находящимся при эксплуатации в высокоэластическом состоянии [2,7, 37]. Что касается применения равновесной термодинамики к стеклообразному состоянию, то никаких особенностей по сравнению с изотропным упругим телом здесь не наблюдается (см., например, [37]). Напротив, термокинетический подход сразу позволяет удобным образом описать ряд специфических эффектов стеклования, что и было сделано в гл. П. [c.105]

    Одним из основных способов улучшения механических свойств линейных полимеров является их вытяжка. Чтобы зафиксировать ориентированное состояние, полученное в результате вытяжки, полимер охлаждают до температур меньших температуры стеклования. Возникающая анизотропия свойств полимеров отражает анизотропию в ориентации макромолекул. Поэтому, измеряя величину анизотропии каких-либо свойств полимера можно получать информацию о степени ориентации его макромолекул. Одним из наиболее чувствительных индикаторов является двойное лучепреломление (оптическая анизотропия) значение коэффициента двойного лучепреломления Лп часто используется в качестве меры ориентации полимера. Установлено, что Дге линейно связан со средним квадратичным отклонением ориентации макромолекул от изотропного состояния. [c.187]

    Наличие одного, двух или трех участков и их протяженность определяются условиями вытяжки. Изотропный или слабо ориентированный полимер имеет малые удлинения при разрыве и разрушается на I участке диаграммы растяжения. Увеличение степени предварительной вытяжки приводит к появлению II и III участков. Одновременно увеличиваются удлинения при разрыве и растяжение образцов будет характеризоваться более высоким уровнем напряжений. При дальнейшем увеличении степени вытяжки пологий участок II сокращается или даже полностью исчезает, а участок III становится круче. Разрушение происходит при более высоких напряжениях. Влияние ориентации на модуль упругости при [c.194]

    В разных температурных интервалах может оказаться ближе к действительности та или иная модель при низких температурах— первая, при высоких — вторая. Структура и свойства ориентированных аморфно-кристаллических полимеров зависят и от их молекулярного строения, и от степени ориентации. Релаксационные процессы в ориентированном полимере в первом приближении можно рассматривать как суперпозицию их в полностью изотропном и полностью ориентированном образцах. При таком подходе можно использовать методы релаксационной спектрометрии для определения степени ориентации. Очень удобным является акустический метод, позволяющий определить ряд структурных характеристик ориентированных полимеров [55] и непосредственно дающий коэффициент ориентации в виде  [c.205]

    Для реального полимера характерна анизотропия взаимодействия между атомами, которая обусловливает особенности спектра их тепловых колебаний и приводит к существенно иному распределению спектра частот, чем это имеет место в изотропных твердых телах. Слабая связь между цепями по сравнению с внутримолекулярными взаимодействиями позволяет считать, что колебания частиц данной макромолекулы не зависят от других цепей, т. е. полимер можно рассматривать как одномерную систему. [c.270]

    Переход полимера из изотропного состояния в ориентированное сопровождается существенной перестройкой надмолекулярной структуры, которая может происходить двумя путями  [c.179]

    В результате ориентации молекул изотропные синтетические полимеры превращаются в анизотропные. Естественные волокна анизотропны вследствие природного синтеза молекул непосредственно в ориентированном состоянии (например, хлопковое и льняное волокна) или вследствие вытяжки в момент формования, когда волокно пластично (например, волокно натурального шелка, формируемое гусеницей из жидкой массы фиброина). [c.195]

    Согласно этой формуле, чем меньше и и чем больше температура, тем вероятнее перегруппировка макромолекул, тем эластичнее полимер. Если же значение и велико, а температура мала, то цепные макромолекулы проявляют себя как жесткие системы. Структурными единицами, из которых образуются полимеры, являются пачки, состоящие из большого числа цепных макромолекул. В зависимости от степени упорядоченности молекул в пачках полимеры могут существовать в кристаллическом и трех аморфных (стеклообразном, высокоэластическом и вязкотекучем) состояниях. Каждое из них определяется комплексом физико-механических свойств, связанных со структурой и прочностью связей вдоль молекулярной цепи и между цепями. Кристаллические полимеры упруги, им присущи анизотропные свойства аморфные полимеры эластичны и изотропны. [c.319]

    Коксом называется твердый углеродный остаток термического разложения органических веществ, независимо от их агрегатного состояния. Однако в силу исторически сложившейся терминологии отдельные виды коксов получили свое наименование. Так, изотропный газонепроницаемый углеродный материал, полученный термической обработкой полимеров, именуется как стеклоуглерод, а пироуглерод и сажи — это коксы, полученные при нагреве органических веществ в газовой фазе. [c.11]

    Оказывается, что расплавленные полимеры изотропны по отношению к процессу теплопроводности, поэтому значения коэффициентов теплопроводности, приведенные в табл. 1, применяются для всех направлений. Эксперименты на образцах из деформированных твердых полимеров [1] демонстрируют более высокие значения теплопроводности в направлении, параллельном деформации, по сравнению с теплопроводностью в направлении, перпендикулярпом деформации. Эти различия достаточно сильны в полимерах, способных к кристаллизации, где возможна разница на порядок величины в двух направлениях. Однако в стекловидных полимерах влияние ориентации на X [c.328]

    Для жесткоцепных полимеров (напр., при длине жесткого сегмента 10 нм и выше) наблюдается ухудшение р-римости сравнительно с гибкоцепньши полимерами, совместимость компонентов Р.п. часто достигается за счет сильных взаимод. полимер-р-ритель. Р-римость полимера повышается при иаличии у макромолекул подвижных боковых групп атомов. Р-ры жесткоцепиых полимеров изотропны лишь прн концентрации ниже нек-рой критической, при повышении кОнцентрации< на диаграмме р-римости наблюдается узкая область двухфазного состояния, а затем состояние полимерного жидкого кристалла (рис. 2). В изотрошшх Р. п. вязкость сильно возрастает с концентрацией, в жидких кристаллах макромолекулы ориентационно упорядочены, что обеспечивает уменьшение вязкости. [c.190]

    Почему полимер, полученный поликонденсацией терефталевой кислоты и гидразина в серной кислоте, образует только изотропные растворы, а после частичной дегидратации может образовывать анизотропные растворы Напишите реакции синтеза обеих модификаций этого полимера. [c.160]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Минимальный объем текущей жидкости, который подвергается сдвиговому усилию, соответствует объему, необходимому для обеспечения сегментального движения макромолекулы. Улучшение термодинамических свойств растворителя (в концентрированных растворах полимеров), а также повышение температуры обусловливают увеличение подвижности макромолекул (или же способствуют уменьшению среднестатистических размеров кинетического сегмента). Так как под влиянием сдви-говьгх усилий происходит не только относительное смещение слоев жидкости, но и вращение ее элементарных объемов (см. рис. 3.3), то взаимное расположение кинетических сегментов полимерных цепей изменяется. При достаточно больших т происходят распрямление макромолекул в потоке, а также их преимущественная ориентация вдоль его оси. Прекращение действия внешних сил обусловливает возвращение системы в первоначальное изотропное состояние в результате релаксационных процессов. [c.184]

    Если в стеклообразной совокупности цепей нет регулярного упорядочения или коллоидной структуры, то говорят об аморфном состоянии. Не так давно природа неупорядоченного или аморфного состояния твердых полимеров вызывала оживленную дискуссию и тш ательно исследовалась. Примерно до 1960 г. преобладало представление о том, что в таких изотропных, некристаллических полимерах, как большинство каучуков, стеклообразных полимеров (ПС ПВХ, ПММА, ПК) или частично кристаллических полимеров (ПХТФЭ, ПТФЭ, ПЭТФ), цепные молекулы имеют случайное распределение и что модель статистического клубка, или спагетти , правильно отражает структуры этих полимеров. В последующие годы в связи с развитием рентгенографии аморфных полимеров все большее признание приобретала концепция ближнего порядка цепных молекул. Эта концепция со всей очевидностью следует из сравнения сегментального объема и плотности аморфной фазы, из электронно-микроскопических наблюдений структурных элементов, калориметрических исследований, закономерности кинетики кристаллизации и изучения ориентации полимерного клубка. После 1970 г. в дополнение к световому и малоугловому [c.26]

    Механические свойства кристаллизующихся полимеров тесно связаны с молекулярной структурой п температурно-силовыми условиями испытаний. Основное отличие этих материалов от аморфных заключается в том, что при их растяжении (так же, как и при растяжении пластической стали) образуется шейка. Ио в отличие от пластичных металлов шейка по мере растяжения прорастает через весь образец. В шейке происходит скачкообразное, ступенчатое разрушение кристаллической структуры и образование новых вытянутых и ориентированных вдоль действия силы структур. При этом в первоначально изотропном материале возникает анизотропия — резкое различие свойств вдоль паправлепия нагрузки и во взаимно иерпепдикулярпых паправлениях. Такая картина может повторяться, если провести растяжение об- [c.50]

    Возможно, наиболее серьезным допущением в модели Дарнелла и Мола является предположение об изотропности распределения напряжений. Возвращаясь к разд. 8.9, можно предположить, что распределение напряжений в канале червяка достаточно сложное. Шнейдер впервые попытался учесть неизотропность распределения давлений [17. Предполагая существование некоторого определенного соотношения между сжимающими напряжениями во взаимно перпендикулярных направлениях и принимая во внимание геометрию твердой пробки, он получил более реальное распределение напряжений, при котором давление, воздействующее со стороны нерасплавленного полимера на гребни, сердечник червяка и поверхность цилиндра, имело различные значения и было меньше, чем давление вдоль оси винтового канала. Отношение между первым и последним составляло примерно 0,3—0,4. [c.436]

    Различают изотропные (к которым могут быть отнесены многие неполярные и полярные полимеры) и анизотропные (к ним относятся некоторые многокомпонентные гетерогенные смеси твердых вещее, о, а также многослойные конструкционные системы) диэлектрики. Смещение положительных зарядов в изотропных полимерных диэлектриках происходит в направлении электрического поля. При этом оказывается справедливым соотношение Р = кагоЕ, где / а —скалярная величина, называемая абсолютной диэлектрической восприимчивостью] Е —вектор напряженности электрического поля ео = 8,85-10- 2 Ф ш электрическая постоянная. Вектор Р на- [c.173]


Смотреть страницы где упоминается термин Полимеры изотропные: [c.194]    [c.86]    [c.142]    [c.51]    [c.268]    [c.143]    [c.155]    [c.70]    [c.82]    [c.261]    [c.310]    [c.392]    [c.37]    [c.58]    [c.37]    [c.219]    [c.151]    [c.159]    [c.64]   
Курс коллоидной химии (1964) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Изотропность



© 2025 chem21.info Реклама на сайте