Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи, влияние

    Парамагнитный резонанс тефлона, облученного рентгеновскими лучами. Влияние абсорбированного кислорода. [c.336]

    Помимо механических воздействий, изучалось также влияние на кристаллизацию электрических и магнитных полей, ультрафиолетовых и рентгеновских лучей, потоков электронов и нейтронов. [c.146]

    Определение методом рассеяния рентгеновских лучей числа микротрещин в волокнах ПА-6, подверженных воздействию напряжения оо = 128 МПа на воздухе, позволило получить интересный результат [214], заключающийся в том, что скорость накопления микротрещин почти мгновенно возрастала (от 5-10 до 110-10 м-з С ) при включении ультрафиолетового облучения. Эта скорость также резко уменьшалась до своего исходного значения при выключении ультрафиолетового облучения по истечении Ю с и при повторении подобной операции. Облучение ненапряженного образца не сопровождалось образованием микротрещин и не оказывало влияния на скорость их последующего образования. Было показано, что ультрафиолетовое облучение напряженного волокна ПА-6 и натурального шелка в атмосфере гелия увеличивало накопление свободных радикалов [213. В данном случае скорость накопления радикалов ири 200<ао<600 МПа убывала в зависимости от длительности срока облучения и достигала постоянной концентрации Л (К) через 5-10 с. В ПА-6 при напряжении 600 МПа концентрация Л (К) была порядка 10 м- это значение близко к предельной концентрации, достигаемой в чисто механических испытаниях при разрыве цепей под действием напряжения. [c.321]


    Коагуляция под влиянием электролитов является наиболее типичным случаем коагуляции и обычно применяется в технике, когда необходимо разрушить коллоидную систему. Однако очень часто коагуляция обусловливается и другими, чисто физическими факторами — механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвука. Наконец, разрушение системы может наступить спонтанно при длительном хранении коллоидной системы. К сожалению, особенности и механизм безэлектролитной коагуляции до настоящего времени изучены недостаточно. Между тем для понимания явления коагуляции во всех его аспектах, для составления верного представления о его существе подобные исследования могли бы дать очень много. Несомненно, что правильный взгляд на явление может быть установлен лишь при всестороннем его изучении, при подходе к нему с самых различных точек зрения. [c.308]

    Статические и динамические искажения и их влияние на рассеяние рентгеновских лучей [c.99]

    Одной из важных задач при уточнении модели структуры является задача о выборе весовой схемы (набора и) , см. [2], [з1). Введение весовой схемы связано прежде всего с приближенным характером вычислений. Нельзя абсолютно точно построить модель, описывающую зависимость интенсивности рассеяния рентгеновских лучей от условий съемки и состояния исследуемого образца - приходится вводить различные допущения и ограничения. Нри этом вносится так называемая неустранимая погрешность (погрешность модели) и для уменьшения влияния этой погрешности на конечный результат вводится весовая схема веса при неточно заданной экспериментальной информации выбираются меньшим по абсолютной величине, чем при достоверных экспериментальных данных. Возникает вопрос, как сравнивать, по какому критерию определять близость экспериментальных и теоретических результатов В геометрии близость двух точек определяется расстоянием. Аналогично сравниваются две крив(> е на плоскости, заданные N точками каждая. Для сравнения каждой кривой ставится в соответствие точка из Л/-мерного [c.212]

    Коагуляция иногда обусловливается механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, его разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвуковых колебаний. Разрушение системы также может наступить спонтанно, при длительном хранении коллоидной системы. [c.92]


    Для исследования строения твердых тел применяются рентгеноструктурный, электронномикроскопический, кристаллооптический, металлографический, петрографический и другие методы. Особенно большое значение имеет рентгенографический и электронный анализы кристаллов. Рентгеновские лучи широко применяются для выяснения строения кристаллических решеток и их деформации под влиянием внешних воздействий. За последнее десятилетие метод рентгеновского анализа все с большим успехом применяется также для изучения строения жидкостей, для определения структуры молекул и расстояний между атомами в молекуле. [c.56]

    В качестве второго объекта исследования был взят галлий. Исследование радиальной функции распределения в жидком галлии, проведенное посредством изучения дифракции рентгеновских лучей и нейтронов, показало, что число ближайших соседей в галлии меняется при плавлении от 1 + 6 до 10. Существенное изменение ближнего порядка, происходящее при плавлении, а также то, что жидкий галлий может находиться в переохлажденном состоянии, делают это вещество удобным объектом для изучения влияния ближнего порядка на структуру энергетического спектра коллективного движения атомов. Исследование неупругого рассеяния медленных нейтронов твердым и жидким галлием показало, что при его переходе в жидкое состояние спектр нейтронов претерпевает коренные изменения. Исчезает молекулярный пик, наблюдавшийся в высокоэнергетической части спектра, получен- [c.187]

    Реакции изомеризации, осуществляемые в присутствии катализаторов Фриделя-Крафтса, например хлористого алюминия, имеют важное значение в современной нефтепереработке. Считают [25], что эти реакции протекают по цепному механизму, но активными промежуточными формами в этом случае являются заряженные карбоний-ионы, а не свободные радикалы. Для изучения влияния облучения на такие реакции было предпринято детальное исследование катализируемой хлористым алюминием изомеризации н-гей-сана и метилциклопентана Для этого исследования применяли два источника излучения — рентгеновские лучи малой интенсивности от обычной аппаратуры рентгеноструктурного анализа с вольфрамовой мишенью и гамма-лучи высокой интенсивности от кобальта-60. [c.163]

    Влияние рентгеновских лучей иа катализируемую хлористым алюминием изомеризацию и-гексана при 29° С (Продолжительность опытов 16 ч весовое отношение хлористый алюминий и-гексан =1,4) [c.163]

    Одним из типов дефектов, обнаруживаемых в кристаллах, являются вакансии кристаллической решетки или точечные дефекты, при которых недостает одного атома в узле кристаллической решетки, обычно занимаемом таким атомом окружающие атомы медленно перемещаются в направлении к этому незанятому узлу. Вакансии образуются в результате термического возбуждения, при зтом число вакансий на единицу объема в металле приблизительно равно числу атомов на единицу объема пара, находящегося в равновесии с данным металлом. В больших количествах вакансии могут возникать под влиянием бомбардировки металла частицами высокой энергии или под действием рентгеновских лучей. [c.508]

    Одно из наиболее поразительных свойств живых существ — это высокая степень мутабильности генов. Вредные мутации уносят многие человеческие жизни в раннем возрасте. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций. Многие мутации могут появляться в результате ошибок репликации ДНК, а также процессов репарации и рекомбинации. Скорость мутирования возрастает в присутствии химических мутагенов, оод влиянием физических воздействий, таких, как, например, воздействие ультрафиолетовым излучением и рентгеновскими лучами, а также при случайном включении вирусной ДНК в хромосомы. [c.289]

    Влияние различных видов излучения высокой энергии (гамма-лучи, рентгеновские лучи, электроны, нейтроны) теоретически изучено хорошо [18—29], сведения же о практическом применении облученного полипропилена значительно более ограниченны, чем, например, о применении полиэтилена. [c.128]

    Дается систематический обзор современных результатов по дисперсионному — обычному и запаздывающему — взаимодействию в капиллярных системах. В качестве исходного для микроскопической теории используется представление о молекулярной природе капиллярных систем и о межмолекулярных силах. Последовательное молекулярно-статистическое описание капиллярных систем строится на большом каноническом ансамбле Г иббса. Для этого используется метод производящего функционала, позволяющий компактно и замкнуто вывести необходимые общие соотношения статистической механики. Решение основополагающей проблемы о влиянии среды на взаимодействие молекулярных объектов достигается как строгий результат исследования коллективных явлений в системах многих молекул. Этот результат формулируется в виде принципа взаимодействия на языке фундаментальных физических понятий, отражающих роль среды как посредника взаимодействия. С единой точки зрения принципа взаимодействия рассматривается широкий круг самых различных по своим масштабам ключевых задач теории капиллярных систем. Сюда относятся молекулярные корреляции в капиллярных системах молекулярная структура плоских, слабо и сильно искривленных поверхностных слоев взаимодействие макроскопических частиц. Используемые в принципе взаимодействия понятия реализуются в этих задачах как сжимаемости и адсорбции. Они и являются параметрами описания коллективных явлений, обусловленных влиянием среды. Особо рассматривается построение парного эффективного межмолекулярного потенциала по данным о рассеянии рентгеновских лучей. На протяжении всей статьи проводится сопоставление с альтернативным макроскопическим подходом, в котором вещество рассматривается не как состоящее из молекул, а как континуум, описываемый макроскопической характеристикой — диэлектрической проницаемостью. Это сопоставление касается не только расклинивающего давления пленки, на примере которого была первоначально сформулирована макроскопическая теория, но и большинства других результатов по дисперсионному взаимодействию [c.163]


    Интересно влияние излучения на кристаллы. При поглощении рентгеновских лучей галогенидами щелочных металлов и другими кристаллами наблюдается характерное окрашивание. Хлористый натрий становится желтым, а хлористый калий — голубым, причем окраска обусловлена поглощением света электронами, которые были выбиты рентгеновскими лучами и захвачены вакансиями отрицательных ионов кристаллической решетки. Когда облученный кристалл нагревают, захваченные электроны высвобождаются, и при возвращении на более низкий уровень энергии они испускают свет. Это явление известно как термолюминесценция. Если кристалл нагревают медленно, то в ряде случаев испускается свет при определенных температурах. На характер кривых зависимости интенсивности излученного света от температуры влияют продолжительность облучения, присутствие примесей и другие факторы. Некоторые породы и минералы, такие, как известняк и флюорит, проявляют термолюминесценцию даже без предварительного облучения, потому что они содержат следы радиоактивного урана порядка нескольких миллионных долей. [c.556]

    Исследовалось влияние механоактивационной обработки и количества дисперсной фазы на полидисперсное строение нефтяных остатков. В качестве сырья использовались нефтяные остатки первичного происхождения (мазут и гудрон западносибирской нефти) и асфальт пропановой деасфальтизации с различным количеством дисперсной фазы, косвенно оцениваемой по содержанию асфальтенов (5,7 8,4 и 12 %, соответственно). Исходное сырье обрабатывалось ультразвуковым диспергатором УЗДН - 2Т в течение 5-30 минут при частоте 22 кГц. Затем образцы анализировались методом малоуглового рассеяния рентгеновских лучей, который позволяет изучать НДС, размеры частиц в которых значительно больше межатомных расстояний и составляют от 10 до 10000 А. Размеры частиц и их распределение относительно друг друга приведены в таблице, где К -радиус инерции частицы относительно ее центра масс, V - относительный объем, %. [c.122]

    Преимущество метода малоуглового рассеяния рентгеновских лучей состоит в том, что он применил для исследования обширного к.1ясса высокоднсперс-пых систем иезависимо от структуры их частиц. Определение функции распределения частиц по размерам с помощью данного метода более удобно в экспериментальном и теоретическом отношении, чем по предыдущему методу. Учет влияния различных посторонних факторов в этом методе несравненно п роще. [c.253]

    Известным аналогом периодических коллоидных структур мо-, жет служить кристалл монтимориллонитовой глины при его внутрикристаллическом набухании в водных растворах. При внутрикристаллическом набухании кристаллические плоскости толщиной каждая около 10 А раздвигаются и между ними образуются жидкие прослойки. Условием набухания является насыщение кристалла ионами Н+, или Na При очень низких концентрациях внутрикристаллические прослойки достигают толщины в 300 А. Одинаковость всех прослоек сохраняет периодическую структуру системы и позволяет по дифракции рентгеновских лучей измерять толщины прослоек. Полученные данные согласуются с теорией ДЛФО. Такой набухший кристалл служит хорошей моделью других периодических структур. С помощью этой модели можно также, как показал О. Г. Усьяров, обнаружить существование ближней и дальней потенциальной ям, энергетического барьера и влияние валентности ионов на закономерности набухания. [c.319]

    Микроанализатор снабжен двумя идентичными вакуумными спектрометрами, расположенными симметрично относительно точки падения электронов на образец, поэтому можно одновременно анализировать два различных элемента, а также отличать влияние микрорельефа от микрохимических неоднородностей образца, что особенно существенно ввиду сравнительно малого угла выхода рентгеновских лучей — 20°. Увеличение 300—2400Х. [c.154]

    Детальный анализ влияния различных систематических ошибок на точность рентгеновских измерений параметров элементарных ячеек проведен в работе [8]. В этой работе показано, чтО ошибка в определении межплоскостного расстояния Ad/d складывается из ошибки, вызванной поглощением рентгеновских лучей в образце, ошибки, обусловленной эксцентриситетом образца и неопределенностью эффективного радиуса, и ошибки, возникающей за счет расходимости пучка. Проведенный анализ влияния этих ошибок на точность измерений показал, что при больших значениях угла вполне оправдано использование в качестве экстраполяционной функции ost d. Еще лучшей экстраполя- [c.150]

    Так как размеры атома соизмеримы с длиной волны X массбауэ-ровского излучения, между волнами, рассеянными отдельными электронами, возникает разность фаз, что приводит к зависимости /н от угла рассеяния и длины излучения к. Тепловые колебания решетки как бы размазывают атом в пространстве, в результата чего зависимость /д от угла рассеяния при изменении тепловых колебаний атома будет меняться (рис. XII.2, а). Температурный фактор, определяющий влияние тепловых колебаний атома на величину атомной амплитуды рассеяния/д, равен известному фактору Дебая — Валлера при рассеянии рентгеновских лучей, который записывается обычно как [c.229]

    Милликен в 1911 г. измерил заряд электрона, исследуя состояние заряженной капельки масла, помещенной между пластинами конденсатора. Заряженная отрицательно капелька притягивалась к положительно заряженной пластине, находившейся сверху если заряд на капле отсутствовал, она опускалась измеряя скорость ее движения в известном поле, можно было вычислить и значение заряда. Время от времени значение заряда менялось, так как капля поглощала ионы, возникавшие в окружающем пространстве под влиянием облучения рентгеновскими лучами. Тогда производилось повторное измерение. Эти опыты дали удивительный результат. Было установлено, что в природе существует минимальный электрический заряд, равный заряду электрона. Количество электричества в любом теле может увеличиваться или уменьшаться толькс на число, кратное этому заряду. В опытах Милликена количество электричества в капле масла никогда не изменялось на значение,, меньшее, чем заряд одного электрона. [c.17]

    Исследователя интересует зависимость интенсивности дифракционных лучей от координат атомов в элементарной ячейке кристалла. Но понятно, что и лучи иервичного пучка, и лучи, дифрагированные решеткой кристалла, меняют свою интенсивность при прохождении сквозь толщу кристаллического вещества под влиянием побочных или вторичных эффектов, К таковым относятся, во-первых, общая зависимость интенсивности рассеяния рентгеновских лучей от угла рассеяния (поляризационный фактор Р)] во-вторых, зависимость интенсивности рассеяния от кинематической схемы прибора (фактор Лорентца ) в-третьих, поглощение рентгеновских лучей в кристалле (адсорбционный фактор Л) в-четвертых, зависимость интенсивности дифракционных лучей от степени совершенства кристалла (первичная и вторичная экстинкции). [c.74]

    Из других солей s-металлов ПА-группы находит применение BaS04 — тяжелый шпат. В очищенном виде он применяется в медицине для рентгенографии, так как очень сильно поглощает рентгеновские лучи. Соли бария ядовиты, но BaS04 ничтожно растворим в воде и не оказывает вредного влияния. [c.305]

    Чтобы проследить влияние формы конусной части муидшту-ка на характер флуидной структуры отпрессованных блоков, массу в контейнере пресса прослоили порошком мела и свинцовыми дробинками, а затем блок исследовали рентгеновскими лучами. Эти опыты показали, что происходит очень большое опережение массы в осевой части мундштука по сравнению с периферийной частью, соприкасающейся со стенками (рис. 34). Величина максимального опережения для конуса а (см. рис. 33) составляет 235 мм, для конуса 6 — 335 мм и для конуса — 210 мм (при диаметре выпрессованного электрода 50 мм). Таким образом, величина максимального опережения массы по оси мундштука зависит от формы конусной части чем большее сопротивление выдавливанию оказывает эта часть, тем больше опережение. Опережение возрастает также с увеличением степени обжатия. Очевидно, если величина опережения пре- [c.134]

    КРИТИЧЕСКИЕ ЯВЛЕНИЯ, особенности в поведении в-ва, наблюдаемые вблизи критич. точек однокомпонентных систем и р-ров (см. Критическое состояние), а также вблизи точек фазовых переходов II рода. Важнейшие К. я. в окрестности критич. точкн равновесия жидкость - газ увеличение сжимаемости в-ва, аномально большое поглощение звука, резкое увеличение рассеяния света (т. наз. критич. опалесценция), рентгеновских лучей, потоков нейтронов изменение характера броуновского движения аномалии вязкости, теплопроводности и др. В окрестности Кюри точки у ферромагнетиков и сегнетоэлектриков наблюдается аномальное возрастание магн. восприимчивости или диэлектрич. проницаемости соотв., вблизи критич. точек р-ров - замедление взаимной диффузии компонентов. К. я. могут наблюдаться и вблизи точек т. наз. слабых фазовых переходов I рода, где скачки энтропии и плотности очень малы и переход, т. обр., близок к фазовому переходу II рода, напр, при переходе изотропной жидкосги в нематич. жидкий кристалл. Во всех случаях при К. я. наблюдается аномалия теплоемкости. К. я. оказывают влияние и на кинетику хим. процессов вблизи критич. значений параметров состояния. В частности, скорость гетерог. р-ций в диффузионной области протекания перестает зависеть от состава системы. Скорость бимолекулярных р-ций с малой энергией активации вблизи критич. точки резко замедляется. [c.540]

    Эксперим. исследование мол. движений проводят с помощью ЯМР, ЭПР, оптич. спектроскопии (люминесцентной, ИК, комбинац. рассеяния), методов диэлектрич. и мех. релаксаций, рассеяния нейтронов, рентгеновских лучей и др. для интерпретации результатов привлекают модельные представления о мол. структуре изучаемого объекта и даша-мике молекул. Из теоретич. методов в первую очередь используют моделирование мол. структур на ЭВМ-численные эксперименты (часто иаз. также машинными или вычислительными экспериментами). Такое моделирование основано на определенных физ. гипотезах относительно характера движения частиц в системе, их взаимод. и т. п. оно позволяет провести детальный анализ динамич. св-в разл. мол. систем, зависимость этих св-в от г-ры и др. термодинамич. параметров и влияния динамики молекул на макроскопич. св-ва в-ва. Одно, пз существ, достоинств численных экспериментов - возможность проверить исходные физ. гипотезы и вычислит, методики, оставаясь в рамках самих этих экспериментов. Совр. ЭВМ позволяют проводить численные эксперименты для систем с относительно небольшим числом N частиц (как правило, N = 10 -10 ). Поэтому для моделирования изотропных макроскопич. систем часто полагают, что все пространство заполнено тождеств, ячейками с периодич, граничными условиями (напр., кубич. ячейками, когда считаются тождественными противополохсные грани).,  [c.111]

    Больщое сходство рентгеновских спектров различных атомов со спектром атома водорода указывает на то, что электрон, с которым связано возникновение рентгеновских лучей, движется по законам, весьма сходным с законами движения электрона в атоме водорода. Другими словами, движение этого электрона главным образом определяется притяжением ядра, и на это движение существенно не влияет присутствие других впеядерных электронов. Таким образом, множитель (7, называемый константой экранирования, получает изящное истолкование. Как мы увидим из табл. 14, число электронов на А -оболочке для любого атома равно 2. Если один из этих электронов перебрасывается на другую орбиту и некоторое время остается на ней, то можно предположить, что остальные, вращающиеся вокруг ядра электроны но оказывают на него больщого влияния. [c.200]

    Около радиоактивных минералов бесцветные минералы приобретают характерную окраску ортотклаз и кальцит—красную, флюорит—фиолетовую, кварц — дымчатую и черную. Причины изменения окраски минералов под влиянием облучения жесткими лучами пока точно неизвестны. Горный хрусталь черной окраски называется морионом при температуре 300— 350 °С эта окраска исчезает, минерал выцветает, превращаясь в горный хрусталь. Облучая горный хрусталь рентгеновскими лучами, черную окраску можно восстановить. При таком изменении окраски изменяется и плотность минерала. Кристаллы кварца черной и дымчатой окраски имеют плотность меньшую, чем бесцветный горный хрусталь различие в плотности достигает 250 мкг/см  [c.36]


Смотреть страницы где упоминается термин Рентгеновские лучи, влияние: [c.335]    [c.68]    [c.154]    [c.72]    [c.50]    [c.132]    [c.75]    [c.81]    [c.185]    [c.91]    [c.242]    [c.596]    [c.229]    [c.119]    [c.2]   
Фотосинтез 1951 (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте