Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновский и электронный анализ кристаллов

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]


    Неравномерность зависимости интенсивности от угла рассеяния позволяет использовать дифракционный эффект для структурных исследований веществ в любом агрегатном состоянии. Сказанное в одинаковой мере относится к дифракции рентгеновских лучей, электронов и нейтронов. Помимо рентгеноструктурного анализа кристаллов наибольшее распространение и признание получили рентгенография стекол и особенно электронография газов и паров. [c.174]

    X Рентгеновский и электронный анализы кристаллов [c.57]

    Методы исследования строения твердых тел. Рентгеновский и электронный анализы кристаллов [c.56]

    Для исследования строения твердых тел применяются рентгеноструктурный, электронномикроскопический, кристаллооптический, металлографический, петрографический и другие методы. Особенно большое значение имеет рентгенографический и электронный анализы кристаллов. Рентгеновские лучи широко применяются для выяснения строения кристаллических решеток и их деформации под влиянием внешних воздействий. За последнее десятилетие метод рентгеновского анализа все с большим успехом применяется также для изучения строения жидкостей, для определения структуры молекул и расстояний между атомами в молекуле. [c.56]

    Методы исследования строения твердых тел. Рентгеновский и электронный анализ кристаллов...................56 [c.386]

    Описанные основы структурного анализа кристаллов, его математический аппарат и частные методические схемы исследований, вообще говоря, одинаково применимы как в рентгеноструктурном (РСА), так и в электронографическом (ЭСА) и нейтронографическом (НСА) структурном анализе. Все три метода основаны на одном общем эффекте — дифракции волн, пропускаемых через кристалл,— и различаются лишь сущностью тех элементарных актов рассеяния, из которых складывается дифракция. Рентгеновские лучи рассеиваются электронами атомов (ядра атомов в этом рассеянии практически не участвуют). Поток электронов рассеивается в электромагнитном поле атомов, т. е. на электростатическом потенциале, создаваемом ядрами и электронами атомов. Поток нейтронов рассеивается только ядрами атомов. [c.125]

    В настоящее время внутренняя структура кристаллов успешно изучается с помощью рентгеновского и электронного анализов. [c.62]

    Структуру кристаллов изучают в разделах естествознания, называемых кристаллофизикой и кристаллохимией. Содержанием кристаллохимии является установление зависимости условий образования и физико-химических свойств кристаллов от их структуры и состава, изучение энергетики и выяснение природы химической связи в кристаллах. Основным методом исследований в кристаллохимии является рентгеноструктурный анализ, использующий явление дифракции рентгеновского излучения на кристаллах, открытое М. Лауэ и др. (1912). В последние десятилетия получили широкое распространение методы электронографии (дифракция быстролетящих электронов на кристаллической решетке) и нейтронографии (дифракция медленных, тепловых нейтронов на кристаллах). Каждый из этих методов обладает спецификой применения, ввиду чего совокупность их позволяет проводить структурные исследования самых различных образцов, существенно различающихся по своей природе. [c.319]


    Молекулярная биология изучает биологические структуры и их функции на молекулярном и атомном уровне. Как научное направление молекулярная биология начала развиваться в период 1930—1940 гг., когда были достигнуты успехи в понимании тонкой структуры и свойств небольших молекул благодаря применению спектральных и магнитных методов, в первую очередь дифракции рентгеновских лучей на кристаллах (рентгеноструктурный анализ) и дифракции электронов молекулами газа этим успехам способствовал и прогресс в теории, связанный с появлением квантовой механики. Первые рентгенограммы фибриллярных белков и целлюлозы были получены в 1918 г., кристаллов глобулярных белков —в 1934 г. но только много лет спустя удалось полностью расшифровать строение белковых молекул. [c.428]

    Симметрия К. проявляется не только в нх структуре и св-вах в реальном трехмерном пространстве, но также и при описании энергетич. спектра электронов кристалла, при анализе дифракции рентгеновских лучей и электронов в кристаллах в обратном пространстве и т. п. [c.537]

    Атом обладает способностью рассеивать падающее на него излучение. Лучи света, потоки электронов, нейтронов, рентгеновское излучение — все известные виды излучения, падая на атом, рассеиваются им. Лучи, рассеянные отдельными атомами, усиливают или ослабляют друг друга в зависимости от взаимного расположения. Это явление называется дифракцией излучения на атомах. Ясно, что дифракция излучения приносит нам сведения о строении вещества. Определяя направления и интенсивность рассеянных лучей, можно получить ценные сведения о строении молекулы, и прежде всего о ее геометрии, т. е. о взаимном расположении центров атомов. Наиболее плодотворным в последнем отношении способом исследования является метод рентгеноструктурного анализа кристаллов органических веществ. [c.352]

    Условия Лауэ лежат в основе использования дифракции рентгеновских лучей, а также упругого рассеяния электронов и нейтронов для структурного анализа кристаллов. Фиксируя падающий на кристалл пучок и те направления, в которых распространяются вышедшие из кристалла волны (рис. 12), можно определить векторы В, т. е. определить узлы обратной решетки кристалла. А зная обратную решетку, нетрудно восстановить структуру кристалла. [c.25]

    Хотя данные по дифракции электронов в газах очень интересны и число исследований в этом направлении непрерывно увеличивается, однако главным источником материала, пригодного для сравнения атомных радиусов,являются, повидимому, данные рентгеновского анализа кристаллов. Мы перейдем сейчас к рассмотрению этого материала. Вместо простого воспроизведения таблиц экспериментально найденных и теоретически вычисленных расстояний в атомных кристаллах, нам казалось более целесообразным дать здесь возможно более полную таблицу как ионных, так и ковалентных межатомных расстояний. Поэтому в табл. 36 приведены экспериментально найденные расстояния между анионами и катионами для большого числа бинарных кристаллов сюда же включены данные для некоторых кристаллов, образуемых простыми ве-ществами. В некоторых случаях приведенные в литературе данные указывают на возможность того, что не все атомы, окружающие катион, находятся на одинаковом от него расстояний. Если расхождения не очень велики, то в таблице приведены средние дан-ные. В некоторых случаях известны также различные кристаллические формы с одинаковыми координационными числами. В этих случаях также приведены средние расстояния. [c.326]

    В рентгеновском флуоресцентном анализе используют рентгеновские спектры элементов для химического анализа веществ. Для получения спектра в качестве диспергирующего элемента применяют кристаллы или дифракционные решетки. Рентгеновское возбуждение атомов вещества может возникать в результате бомбардировки образца электронами больших энергий или при его облучении рентгеновскими лучами. Электронная бомбардировка приводит к появлению не только характеристического спектра элемента, но и достаточно интенсивного непрерывного излучения флуоресцентное излучение содержит только линейчатый спектр. [c.298]

    Вещество обладает способностью рассеивать падающее на него излучение. Лучи света, электронные лучи, потоки нейтронов, рентгеновское излучение — все известные виды излучения, падая на вещество, рассеиваются им. Рассеянные лучи приносят нам сведения о строении вещества. Определяя направления и интенсивность рассеянных лучей, можно получить ценные сведения о строении молекулы и прежде всего о ее геометрическом строении, т, е. о взаимном расположении центров атомов. Наиболее плодотворным в последнем отношении способом исследования является метод рентгеноструктурного анализа кристаллов органических веществ. [c.637]


    Применяя рентгеновский структурный анализ, изучают молекулярно-атомное строение вещества — структуру кристаллов, жидкостей, газов, строение электронной оболочки атома и т. п. Этот анализ является дифракционным методом. При падении рентгеновских лучей на какое-либо тело электроны атомов этого тела рассеивают их во всех направлениях. Рассеянные лучи интерферируют друг с другом, и в некоторых направлениях, зависящих от характера и расположения атомов облучаемого вещества, получается усиление рассеянной волны, в других, наоборот, полное ее поглощение. Методы рентгеновского структурного анализа сводятся к изучению расположения и интенсивности интерференционных пучков лучей и выяснению на этом основании картины строения вещества. [c.17]

    Атомное строение кристалла определяется по дифракции и рассеянию рентгеновских лучей, электронов и нейтронов. Развитие структурного анализа кристаллов началось со знаменитого опыта М. Лауэ (1912 г.), показавшего, что пучок рентгеновских лучей, проходя через кристалл, испытывает дифракцию, причем симметрия распределения дифракционных максимумов [c.131]

    Эта сводка будет основана на уже введенных ранее простых терминах, таких как источник рентгеновских лучей, образец, кристалл и детектор. Фотометр (рис. 4) состоит из источника, образца и детектора образец служит поглотителем, фильтрующим и ослабляющим полихроматический пучок. Поместим на место образца кристалл, служащий для получения брэгговского отражения. Если этот кристалл используют для выделения монохроматического нучка с известной длиной волны, прибор называют спектрометром (см. 1.15). Если кристалл является образцом, для которого определяют межплоскостные расстояния, то прибор называют дифрактометром (рассмотрение его выходит за рамки данной книги). Введем в спектрометр образец в качестве четвертой составной части. В эмиссионном спектрографе образец возбуждают рентгеновскими лучами (или электронами), а кристалл служит для анализа (разложения) испущен- [c.137]

    Первый физический метод, который попытались применить для определения зарядов на атомах, был рентгеноструктурный анализ. Карты рентгеновской плотности, получаемые в ходе структурного исследования кристаллов, казалось бы, давали в руки исследователей объективную картину распределения электронной плотности кристаллов. Однако в дальнейшем выяснилось, что для количественного решения этой задачи необходима такая высокая точность эксперимента и чувствительность приборов, что достоверные данные о зарядах па атомах могли появиться только в последнее время. В табл. 49 дана сводка результатов рентгенографического определения степени ионности связи в кристаллах. Ионность связи [c.102]

    Методы рентгеноспектрального анализа, о которых сообщается в ряде статей сборника, открывают новые возможности определения распределения внешних электронов в кристалле в нормальном и возбужденном состояниях. Представляет несомненный интерес осуществление еще не вполне реализованной возможности определения распределения внешних электронов по рассеянию мягких рентгеновских лучей и видимого света. Эта задача в настоящее время уже поставлена и ждет своего решения. [c.4]

    Продукт, снимаемый с фильтра приемного устройства, представлял собой рыхлую студнеобразную массу серо-зеленоватого цвета. Он подвергался рентгенофазовому, химическому, электронно-микроскопическому анализу. Рентгеновский фазовый анализ показал наличие карбида кремния р-модификации, в котором, по данным химического анализа, содержится 0,1—2,0% свободного углерода (рис. 3). Электронно-микроскопический анализ показал присутствие большого количества нитевидных кристаллов в получаемом продукте. [c.32]

    Уравнение (13.70) — одно из ключевых в рентгеновском структурном анализе. Оно дает прямой способ расчета картины дифракции от кристалла при условии, что известна структура элементарной ячейки. Наоборот, если известен структурный фактор F (Л, к, /), можно рассчитать распределение электронной плотности в кристалле. Для этого надо воспользоваться уравнением, идентичным уравнению (13.39). Однако вместо того, чтобы использовать для описания вклада элементарной ячейки уравнение (13.38), следует прибегнуть к соотношениям (13.67) и (13.70). [c.344]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Довольно близко к рентгеновскому анализу кристаллов и молекул стоит метод дифракции электронов (электронография). Волновая механика показывает, что при действии пучка электронов на поверхность кристалла будут возникать те же диффракционные эффекты, что и при действии рентгеновских лучей. Определение структуры кристаллов и молекул методом дифракции электронов привело к результатам, полностью совпадающим с результатами, получаемыми с помощью рентгеновского анализа. С этой же целью стали применяться и нейтроны (нейтронография), что дало возможность определять положение и водородного атома, чего не удавалось достигнуть методами рентгенографии и электронографии. [c.171]

    Под рентгенографическим анализом понимается совокупность разнообразных методов-исследования, в которых используется рентгеновское излучение — поперечные электромагнитные колебания с длиной волны 10 2—Ю А. В рентгеновских трубках для получения рентгеновского излучения используют столкновение электронов, ускоренных под действием высокого напряжения с металлическим антикатодом. Возникающее при этом рентгеновское излучение в зависимости от длины волны разделяют на жесткое [Х 1 А] и мягкое [к> —5 А], в зависимости от спектрального состава — на непрерывное (сплощное), не зависящее от природы вещества антикатода, и характеристическое (линейчатое), определяемое только природой вещества антикатода а также на полихроматическое, состоящее из волн различной длины, и монохроматическое — с определенной длиной волны. При монохроматическом в основном применяют линии Ка. -серии (возникающей при переходе электронов в атомах с -оболочки на /С-оболочку) металлов от хрома (обозначается СгКа ) до молибдена (МоКа ), длины волн которых лежат в интервале от 2,3 до 0,7 А. Для монохроматизации рентгеновского излучения используются селективно поглощающие фильтры и кристаллы-монохроматоры. [c.71]

    Сведения о внутренней структуре покрытия (типе кристаллической решетки и ориентации кристаллов) дают результаты рентгеновского структурного анализа. Природа и строение самых верхних слоев покрытия могут быть изучены при помощи диффракции электронов. [c.397]

    Химический функциональный анализ далеко не всегда позволяет однозначно установить структуру органических соединений. Некоторые группы дают сходные реакции. Иногда вещества в условиях определения оказываются неустойчивыми. Функциональный анализ не нозволяет судить о составе смесей, числе тех или иных групп и о макроструктуре вещества (простраиствеином строении, структуре кристаллов или жидкости, межмолекулярных взаимодействиях и т, п.). Вследствие этого существенную роль в исследовании строения и свойств соединений играют физико-химические, или инструментальные, методы анализа спектральные, электрохимические, хроматографические, радиометрические и др. Для установления структуры вещества чаще всего используют методы, основанные на взаимодействии вещества или смеси веществ, их растворов с различного вида излучениями. К ним относятся ультрафиолетовая, видимая, инфракрасная спектроскопия, метод люми-иесценцин, оптический и рентгеновский спектральный анализ, рефрактометрия, поляриметрия, метод ядерного магнитного резонанса. На взаимодействии с магнитным полем основан метод электронного парамагнитного резонанса, а последовательно с электрическим и магнитным — масс-спектрометрия. Некоторые из этих методов рассмотрены в посебии. [c.82]

    Основным и наиболее прямым методом определения структуры являются дифракционные методы, использующие рентгеновские лучи или же нейтронные или электронные пучки. Эти методы обычно применяются для исследования кристаллических образцов. Дифракция возникает тогда, когда излучение (в частности, это может быть видимый свет) проходит через узкую щель или через решетку, состоящую из параллельных близко расположенных щелей. При этом пучок отклоняется (дифрагирует), и дифрагированные пучки создают интерференционную картину светлых и темных полос. Характер интерференционной картины определяется длиной волны излучения и шириной щели или расстоянием между щелями в дифракционной решетке. Для получения интерференционной картины необходимо, чтобы длина волны излучения была сравнима с шириной щели или шагом решетки. Расстояния между атомами в кристаллической решетке того же порядка, что и длина волны рентгеновских лучей, поэтому кристаллы могут служить дифракционной решеткой для рентгеновских лучей. Техника рентгеноструктурного анализа кристаллов была впервые развита в 1912 г. М. Лауэ, а теоретическое обоснование этого метода было сделано В. Г. Брэггом и В. Л. Брэггом. [c.51]

    Общую схему рентгеноструктурного анализа можно сравнить с работой обычного микроскопа. Роль объектива, разлагающего в спектр лучи, рассеянные предметом, играет рентгеновская камера (или дифрактометр) с исследуемым кристаллом первичный пучок лучей, создаваемый рентгеновским аппаратом, разлагается кристаллом в дифракционный спектр. Роль окуляра, собирающего лучи спектра в увеличенное изображение предмета, играет вычислительная машина путем математической обработки дифракционных характеристик —направлений и интенсивности дифракционных лучей, она воссоздает увеличенное изображетше распределения электронной плотности по элементарной ячейке кристалла позиции максимумов плотности отвечают размещению [c.47]

    А при 30 кВ. Эта величина тока значительно превышает минимальный ток (1—5-10 А), который обычно необходим для проведения удовлетворительного количественного рентгеновского анализа с кристалл-дифракционным спектрометром. Согласно рис. 2.1, а, работая с вольфрамовым катодом, можно производить рентгеновский микроанализ с минимальным размером зонда порядка 0,2 мкм (2000 А). Такой размер пятна значительно меньше диаметра области-возбуждения рентгеновского излучения в образце (1 мкм, см. гл. 3). Малый размер пучка такого порядка позволяет оператору легко получать электронные растровые изображения анализируемых областей без изменения рабочих условий. Пушка с катодом из ЬаВе дает дополнительные преимущества в режиме микроанализа, потому что она позволяет исследователю проводить надежный рентгеновский микроанализ с электронным зондом размером менее 0,1 мкм. Следует отметить, что в стандартном РЭМ размеры пучка составляют примерно 10 нм (100 А) (рис. 2.1,6). При этом ток зонда для катодов из У или ЬаВе составляет менее Ю °А и слишком мал для проведения рентгеновского анализа кристалл-дифракционным спектрометром. Однако это как раз тот диапазон значения токов, где возможно проведение рентгеновского анализа с дисперсией по энергии (см. гл. 5). [c.15]

    Для С. а. твердых тел примен. обычво-рентгеновский структурнгм анализ, с помощью к-рого, однако, трудно определить положение легких атомов (гл. обр. водорода) в присут. тяжелых. Этого недостатка лишена нейтронография, хотя она примеп. значительно реже, поскольку для осуществления эксперимента необходим ядерный реактор. Положение атомов водорода в молекулярных кристаллах в нек-рых случаях удается определить с помощью метода ядерного магнитного резонаяса в твердом теле. Для С. а. биол. объектов и полимеров широко примен. электронную микроскопию. Строение пов-сти твердых тел изучают с по- [c.548]

    Научные исследования посвящены теории дифракции электронов и рентгеновских лучей, структурному анализу кристаллов, изучению строения белковых молекул. Один из создателей метода структурной электронографии и ее теоретических основ (1950). Определил положение водородных атомов в ряде кристаллов и расшифровал структуру многих комплексных органических соединений. Под его руководством осуществлена расшифровка пространственной структуры растительного белка леггемо-глобина (1975), ферментов асиар-таттрансамииазы (1978), каталазы [c.94]

    Внутреннюю структуру и оптические свойства кристаллов изучают с помощью точных методов рентгеновского, электронно-микроско-пического и кристал-лооптического анализов. Развитие этих методов позволило достичь в настоящее время значительных успехов в изучении строения кристаллических силикатов. [c.41]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]

    Еще при проведении первых исследований полимеров было известно, что как естественные, так и искусственные полимеры кристаллизуются [14а]. Рентгеновский анализ позволил раскрыть решеточную структуру и определить размеры единичной ячейки кристаллов полимера. До 1957 г. полагали, что кристаллиты — мицеллярного типа. Предполагалось, что типичная мицелла представляет собой пучок из нескольких сотен различных молекул, которые, покидая мицеллу и проходя аморфные области, хаотично соединяют мицеллы друг с другом. В 1957 г. Фишер [15], Келлер [16] и Тплл [17] независимо друг от друга открыли и предположили, что полимеры состоят из монокристаллических ламелл со сложенными цепями На рис. 2.2 показана электронная микрофотография пачки монокристаллов ПЭ [18], выращенной из разбавленного раствора, а на рис. 2.3 — укладка цепных молекул в подобных ламеллярных кристаллах. Здесь цепи ПЭ сложены (с поворотом цепи после каждой складки) в плоскости (ПО) ортором-бического кристалла ПЭ. Размеры единичной ячейки определены в работе [19] а = 0,74 нм, 6 = 0,493 нм, с = 0,353 нм (направление оси цепи). [c.28]


Смотреть страницы где упоминается термин Рентгеновский и электронный анализ кристаллов: [c.451]    [c.187]    [c.209]    [c.258]    [c.85]    [c.85]    [c.160]   
Смотреть главы в:

Физическая и коллоидная химия -> Рентгеновский и электронный анализ кристаллов




ПОИСК







© 2025 chem21.info Реклама на сайте