Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий очистка

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    В процессе Мет-х катализатор крекинга реактивируют с помощью ионообменных смол. При контакте с ионообменной смолой металлические примеси хорошо удаляются с катализатора. Влияние различных параметров очистки на активность катализатора и его коксообразующий фактор изучалось в работе [364]. Опыты проводили на алюмосиликатном катализаторе следующего химического состава (в вес. %) окись алюминия 14,2 натрий 0,31 железо 0,18 никель 0,011 ванадий 0,021. В качестве ионообменной смолы применяли пермутит, пропущенный через сито 30 меш. Из сухого загрязненного катализатора, смолы и воды приготовляли суспензию (0,5 г катализатора на 1 мл смолы) количество смягченной воды брали из расчета 0,55 г катализатора на 1 мл. воды. Ионообменную смолу обрабатывали 10%-ной серной кислотой (из расчета 544 кг на 1 м смолы) с последующей промывкой [c.225]

    Зольность топлива зависит от технологии его производства — глубины обессоливания нефти при се подготовке на промыслах и нефтезаводах, степени очистки остатков от катализаторной пыли и реагентов. Зола жидких котельны ( топлив, содержащая соли ванадия, никеля и других тяжелых металлов, откладывается на поверхностях котлов, экономайзеров и другого оборудования, сокращая срок межремонтного пробега котельного оборудования. [c.348]

    Для электролитической очистки ванадия служит ванна из расплава дихлорида ванадия с хлоридом натрия. Применяют железный катод и анод из загрязненного металлического ванадия. Очистку ведут при плотности тока 108 а дм и напряжении 0,35—1,0 в. [c.148]

    В промышленности известно большое число процессов синтеза малеинового ангидрида. Различия в технологических схемах в основном относятся к способам выделения и очистки малеинового ангидрида, стадия окисления бензола практически одинакова. Окисление проводят в газовой фазе на стационарном слое катализатора при массовом соотношении бензол воздух, равном 1 (25- 30). Избыток воздуха по сравнению с теоретическим предотвращает возможное образование взрывоопасных смесей и способствует сохранению активности катализатора, так как активный оксид ванадия (V) может восстанавливаться в неактивный оксид ванадия(IV). Вследствие большого разбавления реакционной смеси воздухом концентрация малеинового ангидрида в продуктах реакции невелика, и обычно в реакционном газе содержится (%, об.)  [c.66]


    В отложениях с регенеративного воздухоподогревателя в основном содержится железо. Характерной особенностью всех отложений является отсутствие хлоридов, несмотря на то что в минеральных примесях мазутов их содержалось большое количество. Отложения преимущественно состоят из сульфатов. Основное отличие состава отложений сернистых мазутов от несернистых заключается в содержании в них ванадия, а также в повышенном содержании нерастворимых окислов, затрудняющих очистку. При сжигании сернистых мазутов отложения образуются быстрее и в больших количествах, чем при сжигании малосернистых, и обладают большей липкостью и прочностью. При работе газотурбинных установок на сернистых мазутах 40 и 60 из-за быстрого заноса отложениями турбина выходит из строя через 1—2 суток. [c.266]

    Для удаления натрия нефтяное сырье пропускают через слой боксита при 345—455 °С под давлением порядка 7 МПа. Дальнейшая обработка в таких же условиях в присутствии водорода способствует удалению ванадия [8, 268]. Контактирование сырья каталитического крекинга, нагретого до температуры выше 200 °С, с отбеливающей глиной приводит к адсорбции на ее поверхности органических соединений металлов. Адсорбент после отпарки направляется на регенерацию. В качестве контакта для очистки тяжелого газойля от металлических загрязнений можно применять гранулированный кокс. Процесс осуществляют при 425—455 °С и объемной скорости подачи сырья 0,5—5,0 ч , обеспечивая выход [c.184]

    Наиболее радикальный метод очистки сырья — гидроочистка — требует больших капитальных вложений и наличия дешевого водорода. Более дешевые методы обычно менее эффективны. Поэтому и по сей день изыскиваются новые методы очистки. Были сделаны попытки использовать для этой цели различные кислоты, такие, как фтористоводородная [314], иодистоводородная в смеси с гидроароматическим углеводородом, например тетралином, что позволяет в отдельных случаях достичь степени удаления металлов до 50% [315]. Предлагается [316] деметаллизировать нефть п остаточные фракции контактированием их с 1—30% жидкой, нерастворимой в нефтепродуктах ароматической сульфокислотой при 65 °С. После второй экстракции ксилолсульфокислотой содержание никеля снижается с 0,2-10 до 0,1%-10-2, ванадия — с 0,4 до 0,18% 10 . После вторичной экстракции толуолсульфокислотой количество никеля уменьшается до 0,4%-10 , ванадия — до 0,6%-10-4. [c.205]

    При работе установки с деметаллизацией катализатора содержание железа, ванадия и натрия на равновесном катализаторе намного ниже, чем при работе без деметаллизации. С увеличением длительности работы количество этих металлов уменьшается. Содержание никеля на катализаторе не уменьшилось, но также было меньше, чем в основном варианте. Из рис. 92 видно, что при очистке катализатора металлы удаляются только частично. Авторы считают, что только небольшая часть металлов является примесями, которые активно отравляют катализатор металлы, остающиеся на [c.229]

    Первичная переработка нефти включает процессы ее очистки от солей и воды, испарения основных фракций в трубчатых печах и разделения на фракции в ректификационных колоннах. Наиболее часто крекингу подвергают фракции нефти, конденсирующиеся при 300—500 °С. Широко применяемый в крекинге алюмосиликатный катализатор (см. стр. 105) отравляется примесями, которые могут находиться в крекируемом нефтепродукте [19, 20, 21]. Сильное, но обратимое отравление алюмосиликатного катализатора происходит при наличии в сырье азотистых соединений. Необратимо отравляется катализатор соединениями щелочных металлов. Снижают активность катализатора соединения никеля, железа, ванадия и других тяжелых металлов. Нарущается работа катализатора при значительном содержании водяных паров. Для крекинга применяют дистиллаты нефти, не содержащей значительных количеств катализаторных ядов, или же подвергают нефть (или крекируемый дистиллат) очистке от сернистых соединений гидрированием. [c.15]

    В настоящее время существует два метода очистки остатков косвенный и прямой. При косвенной гидроочистке из мазута отгоняют под вакуумом л 60% продукта, подвергают его гидроочистке и смешивают с неочищенным остатком. Содержание серы в результате такой операции снижается на 40—45%, зольность и содержание ванадия меняется незначительно. [c.304]

    Зольные части нефти не перегоняются, а входят в остаток. Тем не менее в дистиллятах и маслах всегда имеется зола, но образующаяся уже в результате вторичных процессов разъедания аппаратуры, неполного освобождения от солей при очистке нефтепродуктов и т. д. Зола в нефти и нефтепродуктах состоит из большого количества компонентов, важнейшими из которых являются Са, Mg, Ге, А1 и ЗЮг (последний, очевидно, удерживается коллоидально). В золе сырых нефтей встречаются также ванадий, натрий, фосфор, калий, никель и т. д. [c.36]

    Чем глубже очистка, т. е. чем более полно удаляются вредные соединения, тем меньше выход рафината. Ниже приведены данные ВНИИ НП об очистке вакуумного дистиллята фурфуролом (в сырье содержалось 1,99% серы, 0,1% азота, 0,00066% ванадия и 0,00003% никеля)  [c.33]


    Дожигание выхлопных газов ряда предприятий и установок, в особенности содержащих полициклические ароматические углеводороды, целесообразно осуществлять на катализаторах, например, на оксидах ванадия и меди, нанесенных на оксид алюминия. Температура каталитического процесса 400-500°С против 900°С и более в случае термического сжигания, объемная нагрузка катализатора 10-25 тыс. ч" , полнота очистки 97-100%. [c.372]

    Соединения натрия могут попадать в топливо вследствие недостаточной промывки его водой после щелочной очистки, применяемой в отдельных случаях для снижения кислотности топлива или удаления из него сероводорода. Присутствие соединений ванадия возможно в топливах, полученных прямой перегонкой нефти соединения молибдена, а также кобальта, никеля и цинка могут попасть в реактивные топлива, прошедшие обработку в присутствии катализаторов, содержащих эти элементы. В комплексе методов квалификационной оценки реактивных топлив предусмотрено спектральное определение перечисленных элементов и установлено предельно допустимое их содержание (не более 10 %). [c.57]

    Чем глубже очистка, т. е. чем больше полнота удаления вредных соединений, тем меньше выход рафината. Ниже приводятся данные о результатах очистки вакуумного дистиллята фурфуролом (в сырье содержалось 1,99% мае. серы, 0,10% мае. азота, 0,00066% мае. ванадия и [c.125]

    Содержание примесей определяется чистотой исходных полимеров, температурой получения СУ и, как правило, не превышает 0,02%. В их состав входят в порядке уменьшения количества железо, ванадий, кальций, кремний, алюминий, марганец, магний. Возможна специальная очистка СУ. [c.496]

    Для снижения перенапряжения водорода были предложены различные способы так называемой активации электродов путем нанесения на их поверхность электролитически различных металлов (молибдена, вольфрама, ванадия) или сплавов. Эффект, обусловленный активацией электродов, сохраняется в течение длительного времени только при условии тщательной очистки электролита от примесей солей железа. В этом случае катоды, активированные никелевым покрытием, содержащим серу, обеспечивают снижение напряжения на ячейке на 2% в течение двух лет. [c.111]

    Важнейшим методом разделения металлов является их электролитическое выделение на ртутном катоде. Поскольку перенапряжение водорода на ртути превышает 1 В, из раствора можно выделить многие металлы. Однако алюминий, скандий, титан, ванадий, вольфрам и некоторые другие даже и в этих условиях не могут быть выделены, а ионы щелочных и щелочноземельных металлов восстанавливаются только в щелочном растворе. Напротив, железо можно успешно удалить электролитическим путем из переведенного в раствор алюминиевого сплава. Указанный способ можно также применять для очистки растворов урана. Выделение веществ на ртутном катоде чаще всего проводят при контролируемом потенциале, опти- [c.265]

    Такой метод очистки металлов от примесей получил название иодидного метода. Он, в частности, применяется в промышленности для глубокой очистки циркония от примеси гафния. Были получены хорошие результаты при очистке этим методом титана, ванадия, ниобия, вольфрама, тория. [c.22]

    Кальций используется в качестве восстановителя при извлечении из соединений почти всех редкоземельных элементов и таких металлов как уран, торий, хром, ванадий, цирконий, цезий, рубидий, титан, бериллий, при очистке свинца от олова и висмута, для очистки от серы нефтепродуктов, для производства антифрикционных и других сплавов, в виде металла и сплавов в химических источниках тока. [c.240]

    В качестве инертного газа удобнее всего применять чистый азот, свободный от примесей других газов (обычно от кислорода). Простейшим способом очистки является предварительное пропускание N2 через кислый раствор соли двухвалентного ванадия или хрома. [c.209]

    Для удаления примеси кислорода из благородных газов иногда используют кислый раствор соединений ванадия (II). Какая реакция лежит в основе этого метода Предложите схему лабораторной установки для очистки технического аргона (из баллона) от кислорода. [c.134]

    Очистка ванадия, ниобия и тантала производится переплавкой металлов в вакууме расфокусированным электронным лучом. [c.334]

    Медно-ванадиевый пек, содержащий до 5% ванадия, отфильтровывают и направляют на переработку. Очистка тетрахлорида от твердых хлоридов завершается дистилляцией. [c.266]

    Металлический кальций применяют в металлургии, используя метод кальцнйтер-мни для получения чистых бериллия, ванадия, циркония, ниобия, тантала и других тугоплавких металлов, а также вводя его в сплавы меди, никеля и специальные стали для связывания примесей серы, фосфора, углерода. Его применяют также для очистки благородных газов от кислорода н аз га, с которыми кальций энергично взаимодействует. Кальций и барий используют как вещества (геттеры), служащие для поглощения газов и создания глубокого вакуума в алектронных приборах. [c.299]

    Сополимеризацию можно проводить так же, как полимеризацию пропилена (см. рис. 69). При периодическом методе реакцию проводят в автоклаве, куда при —65 °С сначала вводят жидкий пропилен, а затем подают этилен под таким давлением, чтобы газ был нужного состава. Оба компонента могут быть растворены в гептане, циклогек-саие или бензоле. Компоненты катализатора подают отдельно в виде растворов в углеводородах. Полимеризация продолжается примерно 10—40 мпн, после чего ее прекращают добавкой спирта. Для удаления соединений ванадия и алюминия реакционную смесь обрабатывают кислотами. После очистки добавляют антиоксиданты для стабилизации сополимера. [c.313]

    В последующем нормы на содержание серы ужесточались, а вышеуказанная схема ие могла обеспечить получение в конечном продукте содержание серы, как правило, менее 1,0%. Появилась необходимость в очистке от серы непосредственно и остатков. При решении этой сложной задачи сложился ряд вариантов. В основе прежде всего лежит характеристика перерабатываемого сырья. Она определяется исходной нефтью и глубиной отбора дистиллятных фракций. Это становится понятным, так как содержащиеся в различных количествах в разных нефтях металлы (ванадий и никель), отравляющие катализатор, концентрируются в остатках от перегонки нефти. Были попытки ввести градацию в содержание металлов в сырье и определение, исходя из этого, типа технологии его гидрообессеривания. При содержании металлов в исходном сырье менее 25 г/т процесс может быть осуществлен с высокими технико-экономическими показателями в реакторе со стационарным слоем одного вида катализатора, характеризующегося высокой гидрообессеривающей активностью и относительно небольшой металлоемкостью. При содержании металлов 25-50 г/т более эффективно использование системы из двух видов катализаторов, причем первый должен характеризоваться высокой металлоемкостью, при этЬм допустима невысокая гидрообессеривающая активность. Другой катализатор должен быть высокоактивным в реакции гидрообессеривания. При содержании в сырье металлов более 75 г/т фирма бЬеИ считает предпочтительнее использовать системы с движущимся слоем и непрерьтной заменой катализатора. По другим данным предельным содержанием металлов в сырье [c.151]

    В вихревом реакторе целесообразно проводить и санитарную очистку газов, содержащих органические примеси выше критических концентраций. В этом случае внутренняя поверхность трубы покрывалась нами соответствующей катализаторной пленкой [62]. В выявленных нами более поздних публикациях по исследованию трубчатых реакторов со слоем катализатора, нанесенным на стенки трубок, например, для получения малеинового ангидрида из нафталина на катализаторе с пятиокисью ванадия (для интенсификации тепло- и массообмена трубку заполняли инертной насадкой — кольцами Рашига) [63, 65], для окисления аммония на кобальтовом катализаторе (С03О4) не раскрывается технология приготовления и нанесения катализаторных покрытий. [c.128]

    Несмотря на утверждение о том, что применяемые в настоящее время методы эффективны для крекинга не только дистиллятов, но и нефтяных остатков и экстрактов, получаемых при очистке дистиллятов избирательными растворителями [236—239], тание остатки применяются в качестве сырья довольно редко. Они образуют слишком большие отложения кокса на катализаторе, не дают продуктов хорошего качества и способствуют быстрому стареник> катализатора вследствие отравления его металлоорганическими соединениями (главным образом, соединениями ванадия), которые часто содержатся в асфальтовом остатке. [c.323]

    Серная кислота. Этот вопрос более полно будет рассмотрен в главе об очистке. Приведем здесь только общие замечания. Серная кислота с этиленовыми углеводородами дает реакции трех родов 1) Образование серных эфиров. Такая реакция вызывается некоторыми катализаторами, например солями серебра и ртути, окисью ванадия и т. д. эти серные эфиры при гидролизе дают спирты. Этилен дает этиловый спирт. С высшими углеводородами можно получить при действии HaSOi также вторичные и третичные спирты. 2) Концентрированная серная кислота вызывает реакции полимеризации этиленовых углеводородов, причем склонность к полимеризации возрастает вместе с молекулярным весом. 3) Наконец при употреблении во время очистки нeпpeдed ьныx фракций нефти весьма крепкой серно й кислоты происходит выделение SOj, что указывает на окисление нефти и восстановление серной кислоты. [c.31]

    Разработан катализатор, устойчивый в условиях гидроочистки остатков. При очистке до 1 % серы он работает 1500 ч. При 300 кгс/см срок службы увели-чиваетаяв 2—3 раза. Регенерация его, однако, затруднена, так как он адсорбирует из сырья до 1—3% никеля и 1,5—5,0% ванадия. Рекомендуется для переработки деасфальтизатов [c.83]

    В чем особенности текущего момента На НПЗ отрасли десять лет назад производилось до 700 тыс. т. технического углерода (сажи), сырье для которого готовили более десятка установок термического крекинга (УТК) в виде термогазойля, термомасла и термоконцентрата. На этих установках дополнительно к сажевому сырью вырабатывался дистиллятный крекинг - остаток (ДКО), который вовлекался как компонент сырья УЗК, при этом из смеси гудрона и ДКО получался хороший нефтяной кокс в количествах, практически отвечающих запросам алюминиевой и электродной промышленности. К настоящему времени ситуация во многом изменилась. На НПЗ Омска, Ангарска, Новокуйбышевска эти УТК выведены в резерв или демонтированы, а это 6 установок мощностью 600-700 тыс. т по сырью в год каждая. На НПЗ Уфы, Волгограда, Перми УТК сохранились, но объем перерабатываемого сырья резко снизился. Например, в Волгограде выработка ДКО не превышает 70 тыс. т в год, в Перми на УЗК используется всего 150 тыс. т крекинг - остатка, в Уфе эти установки также незагружены, планируется их перевод на режим висбрекинга, т.е. переработки гудрона в котельное топливо. Это все говорит о сокращении сырьевой базы УЗК и в некоторой степени объясняет ухудшение качества нефтяного кокса, ведь сырьем УТК были смеси тяжелых газойлей каталитического крекинга, газойлей процесса коксования и экстрактов селективной очистки масел, содержащие меньше серы и ванадия, чем гудроны. [c.11]

    Очистка бензольных- углеводородов в присутствии водорода осуществляется в газовой фазе над катализатором. Целевыми реакциями очистки являются гидрообессеривание и гидрирование ненасыщенных углеводородов. При получении бензола высокой степени чистоты определяющими являются реакции гидрообессе-ривання, особенно гидрогенолиз наиболее термически стабильного соединения — тиофена. Катализаторами гидрообессеривания могут быть сульфиды или оксиды молибдена, кобальта, вольфрама, никеля, ванадия. В промышленности широко распространен алюмокобальтмолибденовый катализатор. [c.224]

    В 1831 году английский ученый П.Филипс разработал контактный способ производства серной кислоты на платиновом катализаторе. Позже платина была заменена контактной массой на основе оксида ванадия (V), что позволило снизить температуру зажигания. В начале XX века Р. Книтч установил причины отравления катализатора при использовании в качестве сырья колчедана и разработал методы очистки оксида серы (IV) от каталитических ядов. Это было использовано при разработке различных технологических схем производства серной кислоты контактным методом, среди которых получила широкое распространение в России и за рубежом так называемая тентелевская схема , впервые освоенная в России на заводе Тентелева. [c.152]

    Наличие металлов в сырье крекинга, особенно никеля, меди, ранадия и железа, является причиной ухудшения эффективности действия катализаторов, обусловливая резкие изменения его активности и селективностил По степени возрастающего влияния на изменение выхода продуктов крекинга металлы располагаются в той же последовательности, в какой они вызывают уменьшение активности катализатора свинец<хром<железо<ванадий<мо-либден<медь<кобальт<никель [8]. Снижение выхода бензина и увеличение коксообразоеания при накоплении металлов и других ядов существенно ухудшают технико-экономические показатели каталитического крекинга. В связи с этим весьма важно подвергать сырье очистке или удалять металлы с поверхности катализатора специальными методами. [c.24]

    Мы уважительно и бережно относимся к нашим потребителям, стараемся учесть их требования к качеству кокса. Поэтому в последнее время установка коксования находится под пристальным вниманием спещаалистов завода. С целью расширения сырьевой базы установки коксования проведен ряд работ по исследованию влияния на процесс коксования различных сырьевых композиций. На установке проведен ряд опытно-промышленных пробегов, в процессе которых в качестве сырья использовали сырьевые композиции, состоящие из гудрона, асфальта установок деасфальтизации, экстрактов селективной очистки масел и тяжелого каталитического газойля. На установке замедленного коксования бьши реализованы мероприятия, позволяющие в настоящее время вырабатывать кокс стабильного качества содержание серы - не более 1,5% ванадия - не более 150 ррш. Это полностью удовлетворяет требования алюминиевой промьппленности. Некоторые компоненты композиции позволили снизить зольность сырого кокса с 0,17 до 0,14- [c.89]

    Особенно высокая ешсость и избирательность глин обнаружена по отношеншо к ионам тяжелых металлов Сг, РЬ V. Результаты сорбции металлов глинами в статическом режиме при температуре 20°С из модельных растворов с концентрацией в Ь ПДК, приведенные в табл. 3, показывают, чго сорбционная активность кислотноактиви-рованных бентонитовых глин гораздо выше активности глауконита. Концентрация хрома при очистке бентонитовыми глинами уменьшается в 10 раз, при очистке глауконитом только в 4,2 раза. Активность по свинцу у бентонитов в 5-7 раз выше, чем у глауконита, по ванадию показатели сорбции для бентонитовьа глин также выше. [c.106]

    На анодах при работе электролизера выделяются хлор и кислород или диоксид углерода в зависимости от вида используемых анодов. Кроме того, с анодным газом смешивается водород, образующийся на ртутном катоде. При норма 1ьных условиях электролиза хлоргаз содержит 0,5% (об.) водорода. Однако при нарушениях процесса электролиза, например при нарушении циркуляции ртути либо попадании в раствор или ртутный катод железа и примесей (так называемых амальгамных ядов —хрома, ванадия и некоторых других) возможно усиленное выделение водорода. Это, помимо снижения выхода по току щелочного металла на катоде, приводит к снижению качества хлоргаза и за счет подщелачивания раствора резко повышает содержание растворенного хлора в анолите, что может нарушить в дальнейшем стадию очистки раствора. При заметном повышении содержания водорода в хлоргазе отдельных ванн эти ванны должны быть отключены и устранены причины (повреждение гуммировочного слоя, снижение скорости циркуляции ртути и др.), приведшие к повышению содержания водорода в хлоргазе. [c.91]


Смотреть страницы где упоминается термин Ванадий очистка: [c.260]    [c.45]    [c.66]    [c.193]    [c.200]    [c.183]    [c.184]    [c.19]    [c.260]    [c.45]   
Неорганические хлориды (1980) -- [ c.333 , c.334 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий электролитическая очистка

Ректификационная очистка хлоридов ванадия



© 2025 chem21.info Реклама на сайте