Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы методы очистки

    Институт был организован в 1947 г. Бессменным директором института до 1975 г. был академик А. П. Виноградов. Главная задача аналитического отдела института — развитие теоретических основ аналитической химии, разработка методов определения малых концентраций и малых количеств элементов в неорганических объектах. Ниже перечислены основные направления исследований исследование комплексных соединений, имеющих аналитическое значение, изучение механизма аналитических реакций разработка методов разделения и концентрирования инструментальные методы анализа теория действия, синтез и применение органических аналитических реагентов аналитическая химия благородных металлов определение газообразующих примесей в металлах методы очистки и анализа вод. [c.199]


    Металл Метод очистки Предел прочности при сдвиге, кг см  [c.80]

    Этот метод очистки основан на том, что дифенилолпропан хорошо растворяется в щелочах, образуя соответствующие металлические производные некоторые побочные продукты, содержащиеся в дифенилолпропане, растворяются плохо и могут быть отделены от раствора фильтрованием, а другие растворяются лучше дифенилолпропана и остаются в растЕоре при его осаждении. Добавляя затем к раствору точно рассчитанное количество кислоты, можно выделить дифенилолпропан в чистом виде. В качестве щелочного агента используют гидроокиси щелочных металлов, например ЫаОН. [c.164]

    Во многих производствах образуются технологические и отходящие газы с невысоким [0,5—2,0% (об.)] содержанием диоксида серы (производство серной кислоты, цветных металлов, газы нефтепереработки, агломерационных фабрик, топочные газы ТЭЦ и т. д.), которые недопустимо выбрасывать в атмосферу как из санитарных соображений, так и в связи с необходимостью извлечения ценного и остродефицитного сырья —серы. Непосредственно перерабатывать диоксид серы из сбросных газов в серную кислоту экономически невыгодно из-за низкого содержания в них 50г [122]. Большинство из существующих способов концентрирования диоксида серы (или очистки газов от ЗОг) основано на использовании различных химических процессов и имеют ряд недостатков высокую стоимость и большой расход реагентов, необратимое (в ряде случаев) поглощение диоксида серы, низкую экономическую эффективность [122, 123]. Это стимулирует поиск новых рациональных методов очистки. [c.329]

    Химические методы основаны на взаимодействии веществ, загрязняющих нефтяные масла, и реагентов, вводимых в эти масла. В результате протекающих реакций образуются соединения, легко удаляемые из масла. К химическим методам очистки относятся кислотная очистка, щелочная очистка, осушка с помощью соединений кальция, осушка и восстановление гидридами металлов. Применение химических методов очистки позволяет удалять из масел асфальто-смолистые, кислотные, некоторые гетероорганические соединения, а также воду. [c.111]

    На основании экспериментальных данных авторы этой работы делают вывод, что при отсутствии специальных методов подготовки сырья крекинга конец кипения отбираемой фракции в вакуумной колонне не должен превышать 500 °С. Данные работы [260] показывают, что промышленные вакуумные колонны позволяют получать вакуумный газойль, содержащий не более 0,05-10- % металлов. Имеющиеся литературные данные [8] подтверждают результаты предыдущей работы. Таким образом, при квалифицированной вакуумной перегонке качество получаемого газойля можно существенно улучшить. Однако дальнейшее улучшение качества сырья каталитического крекинга и увеличение его отбора без применения специальных методов очистки невозможно. [c.182]


    При изучении зависимости степени удаления металлов от выхода деасфальтизата [262] оказалось, что достаточно глубокое удаление металлов при очистке достигается лишь при больших потерях продукта с тяжелым остатком. При повышении глубины отбора деасфальтизата с 40 до 60 объемн. % концентрация в нем вредных металлов возрастает на 400%. В связи с этим некоторые исследователи предприняли попытки интенсифицировать процесс деасфальтизации [196, 262] и даже комбинировать его с другими методами, например с фенольной и гидрогенизационной очисткой деасфальтизатов [263]. [c.183]

    Специальная подготовка сырья для установок каталитического крекинга является исключительно важной. Наиболее дешевым и распространенным способом такой подготовки является тщательная перегонка нефти при получении дистиллятов, предназначенных для переработки в процессе каталитического крекинга. Нельзя ограничиваться однократным испарением, а необходимо использовать методы современной ректификации. Однако даже квалифицированные методы ректификации не могут обеспечить получение качественного сырья, особенно из нефтей с повышенным содержанием азотистых соединений, смолистых веществ и металлов. Часто для повышения экономичности процесса каталитического крекинга приходится применять различные физические и химические методы облагораживания сырья. Из них наиболее универсальным способом является гидрогенизационная очистка она пригодна и для очистки сырья, и для облагораживания циркулирующего газойля. Этот метод позволяет глубоко очищать от вредных компонентов любые, даже наиболее неквалифицированные виды сырья. К сожалению, гидроочистка является относительно дорогостоящим методом, поскольку требуется значительное количество дефицитного водорода. Тем не менее его применение для очистки некачественных видов сырья каталитического крекинга экономически вполне приемлемо. При подготовке сырья, содержащего немного нежелательных компонентов, можно наряду с гидроочисткой применять описанные выше другие, более дешевые методы очистки. [c.211]

    В раздел включена также статья, посвященная изучению возможности гидроочистки сернистого бензола на отработанном катализаторе никель на кизельгуре. Развитие процессов получения циклогексана с использование / катализаторов чистый металл или металл на носителе требует больших ресурсов малосернистого бензола. Из известных методов очистки бензола наибольшее распространение получили сернокислотная очистка и очистка в атмосфере водорода на специальных катализаторах. При получении циклогексана образуется большое количество отработанного катализатора. Использование отработанного катализатора никель на кизельгуре в ступени предварительной гидроочистки бензола представляет определенный интерес с точки зрения как экономичности, так и гибкости процесса. Возможность использования такого варианта и была доказана нашими исследованиями. [c.81]

    Термическое разложение соединений используют для получения особо чистых простых веществ. Часто применяют так называемый иодидный метод очистки металлов. [c.195]

    Объясните теоретически и опишите практическое осуществление иодидного метода очистки металлов. [c.119]

    Металлические индикаторные электроды изготавливают из плоской металлической пластинки, скрученной проволоки или металлизированного стекла. Обычно при погружении в раствор такого электрода быстро устанавливается равновесие. Очень важно перед работой тщательно очистить поверхность металла хорошим методом очистки является быстрое погружение электрода в концентрированную азотную кислоту и последующее многократное промывание дистиллированной водой. Отечественная промышленность выпускает тонкослойный платиновый электрод ЭТПЛ-01М. [c.119]

    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]


    Важной особенностью электрохимического эксперимента является зависимость получаемых результатов от наличия небольших примесей в растворах электролита и в материале электрода. Это предъявляет серьезные требования к очистке воды и других используемых растворителей неорганических и органических реактивов, входящих в состав растворов газов, которыми насыщают исследуемые растворы, а также металлов, применяемых для изготовления электродов. Действительно, монослой вещества на поверхност электрода содержит 10 молекул см , или 10 моль см и может образоваться, даже если концентрация примеси в растворе составляет 10- моль см . Знание основных методов очистки, контроля достигнутой чистоты и специальных приемов для ее поддержания в ходе электрохимического эксперимента является необходимым условием успешного проведения работ в практикуме, а затем и научных исследований в области электрохимии. [c.23]

    Наибольшее число количественных исследований в электрохимии проведено, как уже указывалось выше, на ртутном электроде. Поэтому рассмотрим методы очистки ртути в лаборатории и технику безопасности при работе с этим металлом. [c.35]

    Химические методы разделения смесей веществ основаны на различии в константах равновесия или константах скоростей реакций с участием основного вещества и примесей. Это наиболее древние методы очистки веществ. Например, получение того или иного металла — это не что иное, как процесс отделения атомов этого металла от сопутствующих им атомов других элементов, выделение атомов данного металла из природных смесей, более или менее богатых этим металлом. На химических методах разделения смесей основаны классические методы химического анализа. Эти методы в большинстве своем включают стадию отделения примесей от основного вещества путем перевода их в нерастворимые соединения с последующим отделением осадка или стадию отмывки примесей реактивом, в котором основное вещество не растворяется. [c.11]

    Такой метод очистки металлов от примесей получил название иодидного метода. Он, в частности, применяется в промышленности для глубокой очистки циркония от примеси гафния. Были получены хорошие результаты при очистке этим методом титана, ванадия, ниобия, вольфрама, тория. [c.22]

    Специальная часть химии включает в себя химию конструкционных и электротехнических материалов, химию воды и топлива и специальные разделы электрохимии. Рассмотрены свойства металлов, особое внимание уделено -элементам и материалам ядерных реакторов. Освещено получение и свойства полимерных материалов. Приведены химические свойства воды, описаны методы очистки природных и сточных вод. Рассмотрено строение и химические свойства топлива, проблемы водородной энергетики. Описаны химические источники тока и электрохимические генераторы, электрохимические методы обработки и осаждения металлов. Особое внимание в учебнике уделяется проблеме охраны окружающей среды. [c.3]

    При химических методах очистки реагентами служат а) серная кислота б) щелочи — едкий натр, сода, известь, аммиак и др. в) различные соли — например плумбит натрия, гипохлорит, хлориды металлов и др. г) прочие реагенты. В этом смысле различают сернокислотную очистку, щелочную, плумбитную, гидрогенизационную и др. [c.287]

    По мере совершенствования источников электрического тока расширялись сферы применения электролиза. Электролиз стали использовать для осуществления гидрометаллургических процессов электроэкстракции ряда металлов из растворов, а также электрорафинирования металлов (метод очистки). Были разработаны методы электролиза расплавленных NaOH и Na l, с помощью 1соторых получают натрий и хлор, электролиз расплавленного криолита с окисью алюминия для получения алю- миния (теории этого процесса были посвящены работы П. П. Фе-дотьева). Разработаны методы электрохимического получения хлора и каустической соды путем электролиза растворов поваренной соли, методы электрохимического получения фтора, двуокиси марганца, хлоратов, перхлоратов и т. д., широко используется электролиз воды с целью получения водорода. Большое развитие получили работы по созданию и совершенствованию химических источников тока аккумуляторов и гальванических элементов. [c.11]

    При проведении электролиза в промышленных масшт 1бах требуется очень много электроэнергии, что делает этот метод дорогим, хотя и эффективным способом получения и очистки металлов. Используемый в настоящее время промышленный метод очистки меди основан на электрометаллургической очистке металла, полученного пирометаллургическим способом. [c.154]

    Промышленных методов очистки газов от H2S и Oj весьма много. Из них наибольший интерес представляет очистка этанол-аминами, позволяюп ая при некоторых условиях совместить удаление H2S, СО2 и Н2О. Кроме этаноламиновой очистки для этой цели применяется водная промывка и очистка водными растворами карбонатов щелочных металлов. Этаноламиновая очистка углеводородных газов от HjS и СО 2 была разработана еще в 1930 г. Сейчас этот метод широко применяется в разных вариантах при подготовке сырья для нефтехимического синтеза. При очистке природных газов применяется водный раствор моноэтаноламина концентрацией 15— 20%. Помимо низкой стоимости моноэтаполамин характеризуется высокой реакционной способностью, стабильностью и легкостью регенерации. Температура кипения моноэтаноламина 170° С, он неограниченно растворяется в воде. [c.161]

    С. А. Балезиным и др., выяснены многие важные стороны этого явления. Наряду с другими способами защиты металлов ингибиторы коррозии широко используются при химических методах очистки черных металлов от окалины и ржавчины при химической очистке паровых котлов от накипи. Так как замедлители коррозии уменьшают скорость растворения в кислоте самого металла, но не уменьшают скорости растворения ржавчины или накипи, то применение их в этих случаях сильно ослабляет коррозию. Действие ингибиторов коррозии в этих случаях объясняется тем, что они хорошо адсорбируются на поверхности самого металла, но не его солей или окислов. [c.461]

    Значительное повышение точности определений теплоемкости в сочетании с развитием методов очистки веществ и возможностью использования препаратов высокой чистоты привело к двум важным следствиям. Во-первых, оно дало возможность приступить к систематическому термодинамическому исследованию нестехиомет-рических фаз (постоянного или переменного состава) и выявило, что такие фазы являются довольно распространенными среди некоторых групп соединений (карбиды металлов и др.). [c.29]

    Наиболее радикальный метод очистки сырья — гидроочистка — требует больших капитальных вложений и наличия дешевого водорода. Более дешевые методы обычно менее эффективны. Поэтому и по сей день изыскиваются новые методы очистки. Были сделаны попытки использовать для этой цели различные кислоты, такие, как фтористоводородная [314], иодистоводородная в смеси с гидроароматическим углеводородом, например тетралином, что позволяет в отдельных случаях достичь степени удаления металлов до 50% [315]. Предлагается [316] деметаллизировать нефть п остаточные фракции контактированием их с 1—30% жидкой, нерастворимой в нефтепродуктах ароматической сульфокислотой при 65 °С. После второй экстракции ксилолсульфокислотой содержание никеля снижается с 0,2-10 до 0,1%-10-2, ванадия — с 0,4 до 0,18% 10 . После вторичной экстракции толуолсульфокислотой количество никеля уменьшается до 0,4%-10 , ванадия — до 0,6%-10-4. [c.205]

    В связи с существенным улучшением показателей каталитического крекинга при удалении металлов с поверхности алюмосиликатного катализатора ряд методов реактивации был исследован весьма подробно. В Советском Союзе разработан процесс сухой деметаллизации катализатора. Два метода реактивации катализаторов нашли применение в США в промышленном масштабе. Фирма Атлантик Рифайнер (США) разработала метод очистки катализатора крекинга, обеспечивающий достаточно полное удаление вредных металлических примесей. Этот процесс носит название Мет-х. Он внедрен на нефтеперерабатывающем заводе в Филадельфии в октябре 1961 г. Другой процесс очистки катализатора — Демет — разработан фирмой Синклер Рифайнер и внедрен на заводе в Вудривере (штат Иллинойс) в декабре 1961 г. [c.225]

    Выбор того или иного метода очистки от токсичных газов и паров производится с учетом конкретных условий производства. Экономичность очистки возрастает при использовании отходов производства в качестве очистных реагентов (абсорбента, адсорбента, катализатора), а также при регенерации ценных веществ из отходящих газов, например рекуперации паров бензина или других растворителей, регенерации ртути и других металлов и т. п. Как правило, концентрации примесей в промышленных выхлопах малы, а объемы очищаемых газов велики, ноэтому для их обработки сооружают сложные и громоздкие очистные установки, которые пока еще недостаточно рентабельны. [c.237]

    Вторичная обработка восстановленного металла проводится для его очистки, а также с целью перестройки кристаллической структуры металла, изменения его состава и свойств. К операциям вторичной обработки относятся рчистка металла методами дистилляции, электролиза, электрошлакового переплава и зонной плавки получение сплавов, закалка, отжиг, отпуск, цементирование и др. Некоторые из них рассматриваются ниже. [c.9]

    Эта реакция позволяет выделить кислоты из нефтяных фракций. Соли щелочных металлов этих кислот, хорошо растворимые в воде, полностью переходят в водно-щелочной слой. При подкис-лении этого раствора слабой серной кислотой нефтяные кислоты регенерируются, ваплывают и таким образом могут быть отделены. Однако при этом в большом количестве захватываются и нейтральные масла (от 10 до 60%). Для выделения нефтяных кислот в чистом виде применяются различные методы очистки. Многие соли нафтеновых кислот ярко окрашены. Все они обладают бактерицидным действием. [c.34]

    Электрохимический метод очистки (форэлектролиз) применяется в гидроэлектрометаллургии сравнительно редко, обычно только при получении высокочистых металлов. [c.244]

    Конечно, получение столь чистых металлов осуществляется в результате совокупности ряда последовательно проводимых приемов очистки, начиная с предварительной очистки исходных продуктов, подбора материалов для аппаратуры (тиглей и т. д.), не реагирующих с содержимым, и кончая усовершенствованием самих методов очистки. Среди этих методов очистки — дистилляции, возгонки, диффузионной кристаллизации (зонная плавка), переплавки в вакууме и в защитной газовой среде, немаловаж- [c.565]

    В основе данного метода окрашивания поверхности алюминия лежат следующие основные процессы подготовка поверхности металла (механическая очистка, полировка, обезжиривание, растворение плотной оксидной пленки, электрополировка), электрохимическое оксидирование — образование толстого (0,4—0,6 мм) рыхлого оксидного покрытия, диффузия красителя из раствора в оксидиый слой, т(фмическое упрочение оксидной пленки. [c.146]

    Метод очистки солсй кипячением с соответствующим гидроксидом металла заключается в том, что к раствору соли прибавляют некоторое количество взвеси гидроксида II раствор кипятят в течение 5—10 мин. После того как раствор остынет, гидроксид отфильтровывают, а раствор соли оставляют для кристаллизации. Этот метод очистки основан иа свойствах оснований. [c.71]

    Преимущество методов кристаллизации из расплавов заключается в возможности исключения прямого контакта очищаемого образца со вспомогательной аппаратурой. Поэтому эти методы применяют для глубокой очистки тугоплавких металлов, оксидов и солей. В методе вытягивания из расплава проводят выращивание монокристалла вещества на вращающейся затравочной пластинке с параллельной его очисткой от примесей с коэ( ициентом распределения меньшим единицы. Рассматриваемые методы кристаллизации из расплава позволяют не только очищать вещества, но и вводить в них заданные количества тех или иных микропримесей. В настоящее время кристаллизационные методы очистки считаются самыми тонкими и их обычно применяют на заключительных стадиях получения особо чистых веществ, в том числе полупроводниковых материалов. [c.318]

    Указания к работе Важное место в химической экологии занимают вопросы, связанные с разработкой методов очистки сточных вод. Существуют биохимические и физико-химические методы очистки сточных вод. Особый интерес из физико-химических методов очистки сточных БОД представляет гетерогенно-каталитический вариант, основанный на использовании в качестве окислителя пероксида водорода. 5 ггановлено, что пероксид водорода в концентрациях 10 -10 мопь/л образуется в водоемах при фотохимических процессах с участием микроорганизмов. Под воздействием солнечных лучей, а также под влиянием микроколичеств ионов металлов, присутствующих в воде, возможен распад пероксида водорода. При атом находящиеся в воде вещества - восстановители - окисляются и происходит самоочищение водоемов. [c.102]

    Этот метод очистки выгоден в тех случаях, когда черновая медь содержит примеси благородных металлов, которые собираются на-дне ванны в виде П1лама. Этот последний служит материалом для получения благородных металлов — серебра, золота, платины и др., являющихся спутниками меди.  [c.398]

    Предложенный А. М. Гурвичем и Т. Б. Гапон хроматографический адсорбционно-комплексообразовательный метод применяется для разделения катионов металлов, для очистки солей от микропримесей, для улавливания и концентрирования из растворов ценных отходов производства. Промышленность явилась первой сферой применения этого метода. В дальнейшем он стал использоваться и для решения задач аналитической химии. Этот хроматографический метод имеет самостоятельное значение, поскольку механизм разделения смеси растворенных компонентов обусловлен в данном случае не только адсорбцией, а является более сложным. [c.217]

    Первый в мире синтетический каучук, полученный в 1928 г. акад. С. В. Лебедевым, был назван натрийбутадиеновым, так как натрий явился катализатором процесса полимеризации бутадиена. Натрий используют как восстановитель в органическом синтезе, в частности для восстановления жирных кислот в высшие спирты, применяемые в производстве синтетических моющих средств. Высокая теплопроводность натрия и легкость его превращения в жидкость являются причинами, объясняющими использование этого элемента в качестве теплоносителя для обеспечения равномерного обогрева аппаратов химической промышленности, в атомных реакторах, в клапанах авиационных двигателей, в машинах для литья под давлением. Из сплавов свинца, содержащего 0,58% Ыа, делают подшипники осей железнодорожных вагонов, а сплав свинца с 10% Ыа идет на приготовление антидетонатора моторного топлива — тетраэтилсвинца. Иногда натрием заменяют в электротехнике медь, которая в 9 раз тяжелее этого металла шины для больших токов делают из стальных труб, заполненных натрием. Большую реакционную способность натрия используют в металлургии при получении металлов методом натрийтермии, а также для очистки органических веществ, трансформаторных масел от следов влаги. [c.400]

    Наряду с гомогенно-каталитическими методами гетерогеннокаталитические методы очистки сточных вод с использованием Н2О2 как окислителя скрывают в себе широкие возможности. Особого внимания заслуживает гетерогенно-каталитический вариант, в котором в качестве катализатора используются платиновые металлы. Гетерогенно-каталитический распад Н2О2 на платине, палладии и родии в растворах, содержащих органическое вещество, часто сопровождается интенсивным окислением органических веществ с выделением диоксида углерода как конечного продукта окисления. При этом соотношение между промежуточными и конечным продуктом окисления зависит от ряда факторов, в частности от соотношения концентрации пероксида водорода и органического компонента, природы активной фазы, ха--рактер подложки, pH раствора, температуры и др В этой связи заслуживает внимания гетерогенно-каталитическая система катализатор (кат) — Н2О2 — органический компонент (К). [c.620]


Смотреть страницы где упоминается термин Металлы методы очистки: [c.238]    [c.15]    [c.69]    [c.10]    [c.49]    [c.299]    [c.619]   
Окисление металлов и сплавов (1965) -- [ c.201 , c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы очистка

Метод очистки



© 2025 chem21.info Реклама на сайте