Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистиролы с наполнителями, свойства

    Известно, что результаты термомеханических исследований наполненных полимеров зависят от условий деформации, в частности от ее скорости, и поэтому температуры перехода, определяемые в разных условиях для одного и того же материала, могут различаться. Тем более это проявляется при использовании различных приемов термомеханического исследования. Изучение термомеханических свойств пленок полистирола, наполненных стеклянным волокном, в условиях постоянно действующей нагрузки при непрерывном изменении температуры (рис. IV. 3) позволило определить температуры размягчения пленок Гр как точки пересечения касательных к двум почти линейным участкам термомеханических кривых в области размягчения [275]. С ростом напряжения все кривые смещаются в сторону низких температур. Зависимость Гр от действующего напряжения имеет линейный характер, что позволило путем экстраполяции определить величину Гр при нулевом напряжении . Эта величина заметно повышается при введении наполнителя. [c.152]


    В рассмотренном примере при использовании двух разных растворителей наблюдается одинаковое повышение Гс, но различные плотности упаковки наполненного полимера. Это в соответствии с изложенным выше может быть связано с изменениями конформации макромолекул в примененных растворителях и с различными условиями образования агрегатов. Взаимное влияние обоих факторов — формы цепи и образования агрегатов — приводит к разнообразным изменениям различных свойств полимеров в присутствии наполнителей. Для наполненных пленок полистирола, полученных из растворов в различных растворителях, различия в величинах набухания и Гс, возникающие в результате введения наполнителя, значительно меньше, чем для полиметилметакрилата, и отчетливой корреляции между изменениями свойств композиций и термодинамическим качеством растворителя не наблюдается, т. е. резкие различия в качестве растворителя не приводят здесь к сколь-нибудь заметным изменениям свойств наполненного полимера. Это показывает, что для неполярного полимера, менее активно взаимодействующего с поверхностью наполнителя, влияние условий формирования и характера взаимодействия макромолекул с поверхностью сказывается на свойствах наполненного полимера меньше, чем для полярного полимера. В этом случае влияние конформации цепи в разбавленном растворе на свойства сформованной пленки практически отсутствует. [c.92]

    Как правило, полистирольные пластмассы не содержат модифицирующих их компонентов, если не считать незначительных количеств пластификаторов пигментов, красителей и u -зок. Так как полистирольные пластмассы могут получаться с различной температурой размягчения и текучестью, в зависимости от режима полимеризации, пластифицирование полистироль-ных смол применяется редко. Применения пластификаторов избегают также потому, что они могут снизить высокие электрические свойства и водостойкость полистирола. Наполнителей в полистирол, как правило, не вводят, чтобы не нарушать его прозрачности. Широкий диапазон температур, в которых поли-стиролы различного молекулярного веса могут применяться, и большое разнообразие свойств, с которыми могут получаться изделия из него, обусловливают его популярность как материал для формования. [c.157]

    На основе эмульсионного полистирола, наполнителя, пластификатора (или без него) и красителя приготовляется материал для литья под давлением. Из него готовят детали технического и бытового назначения. Основные свойства полистирольной массы следующие  [c.122]


    Упорядоченность во взаимном расположении полимерных молекул и высокая степень регулярности построения цепи приводят к ухудшению приспосабливаемости макромолекул к поверхности и взаимодействия с нею. В работе [563] была рассмотрена роль гибкости молекулярных цепей каучука в усилении сажей на основе представлений об изменении конформации цепей при смачивании полимером твердой поверхности. При этом было найдено, что усиление тем более заметно, чем. выше гибкость цепи и чем больше, следовательно, ее контактов с поверхностью может быть реализовано. Проведенные термомеханические исследования свойств наполненных аморфных и кристаллических образцов полистирола также показали, что при введении наполнителя изменения свойств кристаллического полимера менее заметны, чем аморфного того же химического строения. Таким образом, взаимодействие с поверхностью и адгезия зависят не только от химической природы полимера и наполнителя, но и от степени регулярности цепи и молекулярной упорядоченности полимера в надмолекулярных образованиях. Взаимодействие этих образований с поверхностью и их взаимное расположение — весьма важные факторы, определяющие физико-химические и физико-механические свойства наполненного полимера. [c.284]

    Третьим направлением работы явилась разработка нового способа хлорирования полистирола и сополимеров стирола, и создание новых полимерных материалов на основе продуктов их химической модификации. В результате проведённых исследований впервые установлена возможность и целесообразность поверхностного хлорирования изделий из поли-стирольных пластиков и отработан эффективный способ поверхностного хлорирования, обеспечивающий повышение белизны, снижение токсичности и улучшение физико-механических показателей полистиролов. Разработан эффективный способ получения хлорированных полистиролов с регулируемой структурой и свойствами. Предлагаемый метод не требует применения токсичных органических растворителей, газообразного хлора и дорогостоящего оборудования. Хлорированный полистирол можно использовать в качестве полимерной основы для материалов с повышенной огнестойкостью. Применение в качестве наполнителей для полистирола отходов угледобычи позволяет в определённой степени решать экологические и социальные проблемы ряда регионов страны. [c.28]

    Армирование полипропилена стекловолокном и другими неорганическими наполнителями дает возможность создавать конструкционные материалы с улучшенными эксплуатационными свойствами и расширить диапазон его использования в бытовых электроприборах. Так, полипропиленом, наполненным карбонатом кальция или тальком, заменяют полистирол и АБС-сополимеры при изготовлении дверец и внутренних частей холодильников. Этот материал на 20% дешевле используемого полистирола. [c.138]

    Следует отметить, что на свойства наполненных пленок значительное влияние оказывает отжиг. Температура стеклования полистирольных пленок, прогретых до 100°С, не изменяется с введением наполнителя, но при этом снижается температура перехода в вязкотекучее состояние. Однако прогрев наполненных полистирольных пленок до температуры 170 °С (выше температуры перехода в вязкотекучее состояние) приводит к повышению температуры стеклования (89 °С для пленок, прогретых до 100 °С, и 98 °С для пленок, прогретых до 170°С). Для ненаполненного полистирола отжиг пленок не приводит к изменению температуры стеклования. Кроме того, для наполненных пленок повышается и температура перехода в вязкотекучее состояние (от 101 до 131 °С). Таким образом, прогрев наполненных пленок приводит к увеличению их плотности (Уу при Тс значительно меньше, чем для неотожженной пленки). Однако ДО для отожженной пленки меньше, чем для ненаполненной и неотожженной. [c.45]

    Применимость модифицированных уравнений Симхи — Бойера к описанию свойств смесей наполненных полимерными наполнителями полимеров [456] была проверена экспериментально для смесей аморфных полимеров полибутилметакрилата (ПБМА) полиметилметакрилата (ПММА), полистирола (ПС) н поликарбоната бисфенола А (ПК). Смеси получали из раствора в общем растворителе с последующей термообработкой выше температуры стек- [c.244]

    Термомеханические свойства определяются также степенью дисперсности наполнителя [285]. Введение тонкодисперсного порошка железа в новолачную смолу, полистирол и полиэтилен приводит к замедлению деформации под действием постоянной нагрузки. Увеличение степени дисперсности оказывает действие, аналогичное увеличению концентрации наполнителя. Для полистирола при содержании наполнителя до 30% во всех случаях наблюдается изменение температур текучести и размягчения, а также расширение--температурного интервала между двумя, температурами переходов. [c.158]


    Влияние природных (чистых и модифицированных) наполнителей — глинистых дисперсных минералов в широком интервале Концентраций и степеней дисперсности на термомеханические свойства полиалкилметакрилатов, полистирола и других полимеров [283, 284] в целом аналогично уже рассмотренному выше, и исследование таких наполнителей представляет интерес главным образом с точки зрения нахождения новых типов наполнителей и способов их поверхностной модификации. [c.158]

    Другая причина, как мы полагаем, связана с температурной зависимостью механических свойств полистирола, который в области температур переходного состояния эпоксидной матрицы дильно размягчается. Естественно, что повышение концентрации наполнителя в этом случае тоже должно уменьшать величину действительной части комплексного модуля упругости системы. Обнаруженное уменьшение модуля сдвига с ростом концентрации полистирола и уменьшение среднего времени релаксации может быть истолковано как увеличение сегментальной подвижности в эпоксидной матрице. Поэтому по температурной зависимости экспериментально измеренного фактора сДвига ат и формуле [c.230]

    Согласно Мортону [553], введение тонко размельченного полистирола в вулканизаты приводит к повышению разрушающего напряжения при растяжении из-за возрастания модуля материала. Мортоном установлено, что существует прямая связь между усиливающим действием и модулем упругости наполнителя, а также Гс наполнителя (хотя нет корреляции между Гс и модулем упругости). Эта связь объясняется влиянием жесткости наполнителя на вязкоупругие свойства и прочность системы в целом. [c.278]

    Изучены динамические механические свойства полистирола, его сополимеров и смесей, полученных в различных условиях процесс холодного течения [527, 1414, 1929—1932], зависимость модуля упругости и механических потерь от температуры [1933— 1935], влияние наполнителей на динамические механические свойства полистирола [1936—1938] и т. д. [536, 542, 547, 554, 1939—19451. [c.298]

    Применительно к композиционным материалам (пластмассам) между этими терминами имеются существенные различия. Иногда пластическая масса может состоять только из полимера, например полиэтилен, полистирол и др. Но в большинстве случаев пластические массы являются многокомпонентными системами, в состав которых (полностью или частично) входят следующие компоненты а) связующие вещества — высокомолекулярные соединения (смолы) б) наполнители в) пластификаторы г) красители. Подбором отдельных компонентов пластической массе придается желаемая совокупность свойств, присущая готовому изделию. [c.343]

    Для улучшения гибкости полистирола иногда вводят пластификаторы. В качестве пластификаторов желательно применять малополярные вещества, совместимые с полистиролом и не снижающие его диэлектрических свойств. Обычно применяют хлорированные ароматические углеводороды, эфиры низших спиртов с высшими жирными кислотами, а в некоторых случаях также и обычные пластификаторы — трикрезилфосфат, дибутилфталат и др. Наряду с пластификаторами иногда вводят наполнители, которые служат для увеличения тепло- [c.218]

    СТОЙКОСТИ, твердости и статической прочности полистирола, однако при этом увеличивается и его хрупкость. В общем, как правило, наполнители усиливают те свойства, которые ослабляются введением пластификаторов. В качестве наполнителей полистирола применяют минеральные порошки, главным образом кварцевый порошок (при получении материалов для электротехники), а также силикагель, углекислый кальций (мраморная мука), слюдяной порошок, тальк, окись цинка и т. п. [c.219]

    Свойства полистирольных прессматериалов (ненаполненных п наполненных) сильно варьируют в зависимости от молекулярного веса полистирола, метода полимеризации, характера пластификатора и наполнителя. [c.219]

    По комплексу механических свойств поливинилкарбазол уступает полистиролу, в особенности по показателю удельной ударной вязкости (2—4 кг см ). Вследствие высокой теплостойкости поливинилкарбазол перерабатывается в значительно более жестких условиях, чем полистирол, главным образом методом прессования. Для литья под давлением необходимы более высокие температуры (270—290°) и более высокие удельные давления (до 2000 кг/сж ). Из-за хрупкости поливинилкарбазол часто применяют в смеси с наполнителями (кварцевая мука, асбест, слюда и т. д.). Изделия, приготовленные из поливинилкарбазола методом литья под давлением, имеют ясно выраженную волокнистую структуру, ориентированную в направлении течения массы. [c.229]

    Жесткие пластмассы не содержат пластификаторов. К числу таких пластмасс относится винипласт. Его получают смешением поливинилхлорида со стабилизаторами, наполнителями, смазывающими веществами. Это твердый, химически стойкий материал с хорошими диэлектрическими свойствами. Винипласт выгодно отличается по ряду механических показателей от пластмасс на основе полиэтилена, полистирола, фенопластов, амино-пластов и других. Он хорошо сваривается, склеивается и приклеивается к другим материалам — бетону, металлам, дереву. [c.87]

    Свойства СП, в которых в качестве связующих используются полистирол и кремнийорганические полимеры, а в качестве наполнителей — стеклянные микросферы, представлены ниже [225] . [c.185]

    В СССР выпускают полистирол различных марок, например масса для литья под давлением , являющаяся композицией эмульсионного полистирола с наполнителем, пластификатором и красителем полистирол эмульсионный — для получения литьевого материала методом горячего вальцевания и методом таблетирова-кия с последующим прогревом, а также плиты и трубки из полистирола, получаемые горячим прессованием и экструзией блочного полистирола. Показатели свойств полистирольных прессматериалов следующие  [c.219]

    При отсутствии четких литературных аналогий начинают разделение методом ион-парной хроматографии на обращенной фазе ie с размером частиц 5—10 мкм. Наполнителем в ион-арной хроматографии с добавкой органической неподвижной азы является материал, используемый для обращенной фазы, при работе с нормальной фазой применяют обычный силикагель 5—10 мкм, как и в случае адсорбционной хроматографии, возможно применение нейтральных полистирол-дивинильных смол или смол ХАД. Колонки с i8 служат дольше в ион-парной хроматографии, чем колонки с неподвижной фазой, имеющей более короткую углеводородную цепь. Последующая после привязывания фазы силанизация улучшает свойства материала и увеличивает срок его службы (партисил 5 ОДС). [c.80]

    Как следует из рис. 1, увеличение размера частиц приводит к более существенным изменениям объема при растяжении наполненных эластомеров (пунктирные кривые со штрихом), что также свидетельствует в пользу концепции отрыва цепочек эластомера от поверхности наполнителя (слабоуси-ливающий наполнитель—полистирол). Однако данные Оберса [5], Гесса и Форда [7] и многие другие указывают на недостаточность одной концепции отрыва полимерных цепей от поверхности наполнителя для объяснения его влияния на прочностные свойства эластомера. [c.132]

    Вопрос о влиянии наполнителей на термомеханические свойства был детально изучен в ряде работ [279—281]. Так, при исследовании наполненных стеклянным порошком и стеклянными волокнами пленок полистирола, поливинилацетата, полиметилметакрилата и других полимеров были получены результаты, в основном аналогичные уже описанным. Установлено различие во влиянии порошкообразных и волокнистых наполнителей на температуры пере.ходов на термомеханических кривых волокнистый наполнитель уже при содержании 2,5% может изменять температуру размягчения полимера на десятки градусов, Гт при этом не меняется, в то время как при таких же концентрациях порошкообразный наполнитель оказывает сильное влияние- на Гт и незначительное— на температуру размягчения. Различия во влиянии наполнителей того и другого типа объясняются тем, что волокнистый наполнитель вследствие анизодиаметричности его частиц обладает гораздо большей склонностью к образованию собственных структур в среде полимера, чем порошкообразный. Это структурирование влияет на температуру размягчения и определяет во многом деформационное поведение композиции. При этом прочность структур зависит от прочности прослоек полимера между частицами, определяемой характером взаимодействия между полимером и поверхностью. [c.157]

    IV. 20 приведены термомеханические кривые полистирола, амор-физованпого путем быстрого охлаждения изотактического, а на рис. IV. 21—типичные кривые для кристаллического полимера, содержащего 5% пластификатора и различные количества наполнителя. Экспериментальные данные показывают, что введение наполнителя в кристаллический полимер очень незначительно влияет на изменение его Т л- Введение пластификатора в наполненный изотак-тический аморфизованный и кристаллический полимеры приводит к появлению сложной зависимости от содержания пластификатора. Результаты исследования термомеханических свойств указывают на существенное различие в поведении наполненных непластифициро-ванных и пластифицированных полимеров одной и той же химической природы, но находящихся в различном фазовом состоянии. В случае аморфного полимера, как было предположено нами ранее, взаимодействие макромолекул и надмолекулярных структуре поверхностью наполнителя приводит к образованию дополнительной структурной сетки, что и определяет заметное изменение термомеханических свойств. В изотактическом полистироле, где степень упорядоченности макромолекул велика, их регулярное расположение и сильное меж.молекулярное взаимодействие друг с другом в кристаллической решетке препятствуют образованию каких-либо прочных связей с поверхностью наполнителя. Промежуточное положение занимает аморфизованный изотактический полистирол. [c.175]

    Особенностью реологических свойств наполненных растворов и расплавов является также существование предела текучести, который проявляется, начиная с некоторой критической концентрации наполпителя [357]. Напряжение, соответствующее пределу текучести, возрастает с повышением содержания наполнителя в системе, но не зависит от вязкости исходного полимера [364]. При напряжениях ниже предела текучести течение наполненных систем также возможно, но вязкость при этом очень велика и не зависит от молекулярной массы полимера. При больших напряжениях сдвига структура, образуемая частицами наполнителя, разрушается. Так, например, для расплавов полистирола, содержащего до 54% наполнителя в виде твердых шариков размером 150—260 мкм, был обнаружен предел текучести, который резко возрастает до содержания наполнителя около 12%, а затем до 35%-ной концентрации остается постоянным и далее вновь возрастает на несколько порядков. При этом введение наполнителя приводит к появлению аномально-вязкого течения в той области скоростей сдвига, в кото- [c.194]

    Особенностью таких систем является то, что прививка на ориентированные волокна и свойства получаемого привитого сополимера в значительной степени определяются свойствами волокна [382—384]. Были исследованы прочностные свойства и набухание систем, полученных прививкой линейного полимера — полистирола и трехмерного полиэфиракрилата на ориентированное вискозное волокно. На рис. V. 1 приведена зависимость предельного набухания в растворе щелочи вискозного волокна с привитыми к нему по-лиэфиракрилатом и полистиролом от содержания наполнителя. На рис. V.2 показано изменение прочности вискозных волокон в зависимости от содержания привитого полиэфиракрилата. Аналогичная. картина наблюдается и в случае прививки полистирола. [c.198]

    Способность наполнителя поглощать энергию деформирования увеличивается с ростом адгезии, поэтому роль последней в механизме усиления очень велика. Чем ближе по параметрам раство-5ИМ0СТИ (т. е. энергии когезии) каучук и полимерный наполнитель 556], тем резче повышается сопротивление раздиру при увеличении содержания наполнителя, что определяется адгезией двух компонентов. Влияние наполнителя на энергию разрушения связывают также с тем, что частицы действуют как центры рассеяния энергии. Вместе с тем при использовании диспергированного полимера в качестве наполнителя повышается вязкость матрицы по аналогии с понижением температуры, что также сказывается на свойствах системы. Однако образование химической связи полимерной среды с наполнителем (например, в сополимере бутадиена со стиролом, где стирольные участки как бы играют роль наполнителя) может оказывать меньшее влияние на прочность при растяжении, чем наличие в бутадиеновом каучуке равного количества полистирола. [c.278]

    Усиливающие свойства бентонита также непосредственно связаны с его химической природой. В частности, бентонит оказывает усиливающее действие на полиметилметакрилат, но является инертным наполнителем для полистирола [83, 84]. Очевидно, между гидроксильными группами поверхности бентонита и кислородными группами полиметилметакрилата образуются водородные связи, и молекулы полимера прочно закрепляются на поверхности частиц наполнителя [83]. От наполненного бентонитом полиметилметакрилата кипячением в бензоле удается отмыть 80% полимера, а оставшиеся 20% оказываются прочно связанными с наполнителем. Полистирол в аналогичных условиях отмывается полностью [83]. В том, что именно гидроксильные группы поверхности бентонита ответственны за его усиливающее действие по отношению к полиметилметакрилату, убеждают опыты по амини-рованию бентонита октадециламмопий-ионом [84]. Экранирование поверхности уменьшает доступность гидроксильных групп, и условия для образования водородных связей ухудшаются. Усиливающее действие аминированпого бентонита ослабляется [84]. [c.352]

    Полиизобутилен применяется как электроизоляционный материал — им пропитывают изоляционную бумагу или волокни-СТЫ6 мнтвризлы. Хорошим злзстичным электроизоляционным материалом является сплав полиэтилена и полиизобутилена, в низкомолекулярные сорта полиизобутилена добавляют наполнители— смолы, воска, парафины для получения высококачественных изоляционных замазок. Высокомолекулярные полиизобутилены применяются как добавки к изоляционным лакам, для улучшения их электроизоляционных и адгезионных свойств, а также для повышения влагоустойчивости и предотвращения образования трещин. Полиизобутилены могут быть использованы для получения клеев, защитных покрытий, в качестве мяг-чителей для синтетических материалов (полистирола, поливинилхлорида и др.), как вяжущее средство в печатных пастах и красителях и т. д. [c.80]

    Гели, используемые для заполнения колонок в ЭХ, должны отвечать определенным требованиям, среди которых основными являются устойчивость к воздействию растворителей, температуры, механическая устойчивость в рабочем состоянии, отсутствие адсорбционных свойств по отношению к разделяемым образцам. Чаще всего используют органические гели на основе полистирола (стирагели). Они представляют собой полимеры стирола, поперечно сшитые дивинилбензолом. Степень сшивания определяет жесткость, набухаемость и пористость гелей. Кроме полисти-рольных можно применять винилацетатные (меркогели), декстрановые (сефадексы) гели. Однако последние предназначены в основном для гельч )ильтрационной хроматографии, т, е. для работы с водны.ми системами. Наряду с органическими гелями в ЭХ используют и неорганические носители силикагели, пористые стекла. По своим механическим свойствам неорганические наполнители лучше органических. Однако они обладают более высокой адсорбционной способностью, [c.74]

    Поливинилкарбазол (П.) — прозрачный бесцветный термопластичный аморфный полимер. Объемные карба-зольные группы придают ему сравнительно высокую теплостойкость (выше, чем у полистирола и полиметилметакрилата), гидрофобность, хим-стойкость и повышенную хрупкость. Последнюю можно уменьшить введением пластификаторов (фенантрена, амнлнафталина, хлорированного дифенила), наполнителей (стекловолокна, асбеста, слюды, ориентированных нитей П.) и прививкой к полиэтилену. Диэлектрич. свойства П. мало зависят от темп-ры и частоты электрич. поля. Ниже приведены нек-рые свойства П.  [c.202]

    Изучены динамические механические свойства полистирола 5363-5370 полистирола, усиленного наполнителями явления механической релаксации в различных полистиролах 5373-5380 прочность при изгибе 5381-5звз изменения ударной вязкости в зависимости от скорости и температуры а также растрескивание полистирола под нагрузкой 5386-53Э2 [c.327]

    В работе [915] исследованы усталостные свойства различных пластмасс, усиленных короткими волокнами. Более подробно исследование усталостного поведения найлона, полистирола и полиэтилена, наполненных стеклом, провели Долли и Карилло [915]. Они нашли, что найлон является наиболее устойчивой к усталости матрицей во всех материалах наблюдали нарушение связи полимера с наполнителем. В найлоне, усиленном длинными волокнами, трещины формировались и росли только в тех местах, где концентрация волокна была высокой, в то время как в случае более коротких волокон трещины образовывались в очень локализованных областях. Трещины легко распространялись в полистироле, в то время как в найлоне и полиэтилене они развивались с трудом. Такие результаты согласуются с наблюдениями Герцберга и др. [386], которые нашли, что скорость роста трещин намного выше в полистироле, чем в полиэтилене или найлоне действительно, кристаллические полимеры обычно характеризуются меньшей скоростью роста усталостных трещин, чем стеклообразные [574]. [c.367]

    Свойства полистиролов с наполнителями (тролитул-Si) [c.192]


Смотреть страницы где упоминается термин Полистиролы с наполнителями, свойства: [c.216]    [c.97]    [c.111]    [c.205]    [c.233]    [c.554]    [c.321]    [c.569]    [c.375]    [c.170]   
Химия и технология искусственных смол (1949) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители

Наполнители свойства



© 2024 chem21.info Реклама на сайте