Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусный окислением этилена

    Глиоксаль СНОСНО, простейший представитель диальдегидов, получается при осторожном окислении этилен гликоля, этилового алкоголя и уксусного альдегида. Обычно глиоксаль получают осторожным окислением этилового алкоголя азотной кислотой ". [c.84]

    Часто оксид этилена используют в промышленности не как таковой, а в момент его образования из этилена. Так, например, получают уксусный альдегид. Этилен и кислород пропускают над триоксидом молибдена, пропитанным фосфорной кислотой. В результате окисления образуется этиленоксид, который под действием фосфорной кислоты сразу же изомеризуется в ацетальдегид. Для уменьшения времени контакта и предотвращения дальнейшего окисления ацетальдегида одновременно пропускают водяной пар. При увеличении времени реакции с 1,5-2 до 15-18 си увеличении скорости подачи кислорода получают сразу уксусную кислоту  [c.211]


    В подобных условиях окисляется не только этилен, но и другие олефины. Пропилен и бутен-1 превращаются соответственно в ацетон и метилэтилкетон. При замене соляной кислоты на уксусную окисление этилена приводит к винилацетату, В этом случае в ключевую стадию процесса входит нуклеофильная атака не гидроксильного, а ацетатного аниона. [c.173]

    Этилен служит сырьем для этилового спирта и для получения дивинила [7, 8, 9] каталитическим путем с последующим превращением в синтетический каучук (по методу С. В. Лебедева). Окислением этилового спирта получают уксусный альдегид [10], а затем уксусную кислоту [11, 3]. [c.15]

    Процесс ведут при 170—180 °С и 0,5—1 МПа, пропуская паро-газовую смесь реагентов через гетерогенный катализатор. Чтобы избежать образования взрывоопасных смесей, применяют избыток этилена и уксусной кислоты. При этом непревращенный этилен возвращают на окисление, что делает обязательным использование в качестве окислителя не воздуха, а кислорода. Исходная смесь состоит из этилена, паров уксусной кислоты и кислорода в объемном отношении 8 4 1. Степень конверсии их за один проход через реактор составляет соответственно 10, 20 и 60—70%. Селективность по винилацетату достигает 91—92%, а основным побочным продуктом является СО2 с образованием только 1 % других веществ (этилацетат, этилидендиацетат). [c.452]

    Ббльшая часть алкенов, исключая этилен, при окислении уксусной кислотой на палладиевых катализаторах, дает скорее аллил-, а не винилацетаты [3, 6]. Пропилен, например, с хорошим выходом превращается в аллилацетат при окислении в парообразном состоянии над гетерогенным палладиевым катализатором в присутствии уксусной кислоты. [c.330]

    Эта реакция ацетоксилирования этилена в присутствии восстановленного катализатора, в которой происходит замещение водорода в этилене группой СН СОО в присутствии кислорода. В качестве катализатора предложены хлорид и бромид палладия, ацетат палладия, металлический палладий и др. Для сравнения рассмотрим основные закономерности и технологию получения винилацетата окислением этилена в среде уксусной кислоты как на гомогенном, так и на гетерогенном катализаторах. В промышленности получили распространение два принципиально отличных друг от друга способа получения винилацетата на основе реакции 14.23  [c.484]


    Пропан. При окислении пропана получают ацетальдегид, формальдегид, уксусную кислоту, ацетон. При пиролизе пропана образуется этилен и пропилен. Наряду с метаном и этаном пропан можно использовать и для получения ацетилена (см. рис. I. 2). При нитровании пропана получается нитрометан, нитроэтан и нитро пропан. Продукты хлорирования пропана пока не имеют промышленного значения. [c.21]

    Процесс проводят в одну —две стадии [19]. При двухстадийном процессе в первом реакторе этилен взаимодействует с водным раствором хлорной меди и небольшим количеством хлористого палладия при температуре 100—110°С и давлении 10—11 ат. Образовавшийся при этом палладий переводится обратно в хлористый палладий. Во втором реакторе регенерируется хлористая медь в хлорную окислением воздухом. Выход ацетальдегида на прореагировавший этилен составляет 92,4%, Кроме того, образуются 2% уксусной кислоты и 0, 5% хлорсодержащих продуктов. [c.16]

    Несмотря на отсутствие насыщенных атомов углерода в этилене, окисление его в зависимости от параметров процесса и катализатора может протекать в разных направлениях. На медном контакте и пятиокиси ванадия при 500—550 °С получается в основном формальдегид с побочным образованием муравьиной кислоты, окиси этилена, ацетальдегида, уксусной и щавелевой кислот и частичным сгоранием в окислы углерода. На других металлических контактах, включая серебро, при тех же температурах преобладает полное окисление. При термическом окислении в отсутствие катализаторов также образуются формальдегид, ацет-  [c.551]

    Широкое развитие процессов алкилирования, хлорирования, окисления, гидрирования и т. д. в производстве многих продуктов органического синтеза, а также их зависимость от сырьевой базы обусловливает создание сложных связей. В этих производствах во многих случаях будут вынуждено складываться тесные взаимосвязи между процессами получения отдельных продуктов (например, при комплексной переработке некоторых видов углеводородного сырья — прямогонных бензинов на этилен и пропилен, в совместных производствах каустической соды, хлора и продуктов его переработки, фенола и ацетона, уксусной кислоты и уксусного ангидри- [c.62]

    За последнее время заменяют ацетилен значительно более дешевым этиленом или пропиленом, в частности при получении уксусного альдегида. Окислением этилена в водном растворе, содержащем небольшое количество катализатора хлорида палладия (I), а также окислитель для его регенерации — хлорид меди (II), получают уксусный альдегид с выходом до 95%  [c.279]

    Сырьем для такого процесса служит смесь н-бутенов, которая достаточно доступна в странах, производящих этилен пиролизом бензинов. Из фракции С4 газов пиролиза извлекают (обычно экстракцией) бутадиен и затем 2-метилпропен. Остаток состоит из н-бутенов ( 80%) и н-бутана (20%). При непосредственном окислении этой фракции получается сложная смесь продуктов, содержащая много смолистых веществ. Превращение же н-бутенов во втор-бутилацетат создает условия для преимущественного образования уксусной кислоты. [c.344]

    Технологическая схема процесса представлена на рис. 4.11. Свежий этилен, кислород, уксусная кислота и циркуляционные газы (этилен, кислород) вводятся в вертикальный трубчатый реактор 1. Трубы реактора заполнены катализатором, в межтрубном пространстве циркулирует горячая вода. На выходе из реактора для закалки подается холодная вода. Далее продукты реакции охлаждаются в холодильнике 2 до 0°С и конденсат отделяется от газов в сепараторе 4. Несконденсировавшиеся газы после сжатия компрессором 3 подаются на абсорбцию пропиленгликолем при комнатной температуре в абсорбер 5. Газы, выходящие из абсорбера и содержащие непрореагировавший этилен и СОг, подвергаются очистке от диоксида углерода в скруббере 7, орошаемом горячим раствором соды, с последующим выделением диоксида углерода в десорбере 8. Этилен, отделенный от СОг, возвращается в реактор на окисление. Обычно содержание кислорода в циркуляционном газе значительно меньше 5 % (об.). Поэтому после его смешения со свежим этиленом добавляют свежий кислород. [c.250]

    При дальнейшем действии перманганата в кислой среде или хромовой смесн идет окисление углероден, при которых была двойная связь, и, наконец, происходит разрыв углеродной цепи. Получаются две молекулы кислот или кетон и кислота в зависи- мости от строения окисляемого соединения. Например, триметил-этилен (СНз) 2—С = СН СНз расщепляется с образованием ацетона и уксусной кислоты. [c.94]

    Несмотря на отсутствие насыщенных атомов углерода в этилене, окисление его в зависимости от параметров процесса и катализатора может протекать в разных направлениях. На медном контакте и пятиокиси ванадия при 500—550 С получается в основном формальдегид с побочным образованием муравьиной кислоты, окиси этилена, ацетальдегида, уксусной и щавелевой кислот и частичным сгоранием в окислы углерода. На других металлических контактах, включая серебро, при тех же температурах преобладает полное окисление. При термическом окислении в отсутствие катализаторов также образуются формальдегид, ацетальдегид, окись этил.ена, муравьиная кислота и, кроме того, глиоксаль (он со значительным выходом получается над двуокисью селена при 300 °С). [c.519]


    Этилен-а,3-бмс-(фенилсульфон) синтезирован также окислением сульфида хромовой кислотой [334] и а,а,8-/и]онс-(фенил-сульфид)-этана—3 %-ным раствором марганцовокислого кaw и I в кислом растворе [329]. Окисление этилен-а, р-бис-(л-нитрофе-нилсульфида) хромовой кислотой в ледяной уксусной кислоте приводит к образованию сульфона с 75%-ным выходом (186а]. а, -Пропилен-бмс-(сульфонилуксусная кислота) и многие подобные соединения получены с удовлетворительным выходом при окислении дисульфидов перманганатом [335]. Этот же окислитель пригоден и для синтеза приведенных ниже циклических дисульфонов [336]  [c.191]

    Уксусная кислота является важным продуктом основного органического синтеза. Она применяется для производства уксусного ангидрида, сложных эфиров и других ценных продуктов. В настоящее время существует несколько промытленных методов получения уксусной кислоты, основанных на окислении ацетальдегида [1]. В связи с известными недостатками этих методов, а также увеличивающимся спросом на уксусную кислоту разрабатываются новые перспективные методы ее получения. Так Вальтером Крёнигом разработан процесс получения уксусной кислоты оксикрекин-гом втор-бутилацетата, который, в свою очередь, получают алкилированием уксусной кислоты н-бутиленами [2]. Однако селективность процесса по уксусной кислоте составляет не более 60%. В последнее время в литературе появились данные патентного характера по получению уксусной кислоты окислением этилацетата [3], получающегося алкилированием уксусной кислоты этиленом [4]. [c.3]

    Схема производства винилацетата окислением этилена в присутствии растворимого катализатора представлена на рис. 123. Реакцию осуществляют в реакторе 1, представляющем собой бар-ботажную колонну, при 100—130 С и 30 кгс/см (2,94 МН/м ). В реактор подают катализаторный раствор, уксусную кислоту, этилен, кислород и циркуляционный газ (суммарная концентрация кислорода в исходном газе около 5,5 объемн.%). Выходящая из реактора газовая смесь содержит наряду с непрореагировавщими этиленом и кислородом винилацетат, ацетальдегид, этилидендиацетат, а также пары уксусной кислоты. Эта смесь после охлаждения в холодильнике 3 и дросселирования поступает в газосепаратор 4. Несконденсировавшиеся газы после извлечения из них двуокиси углерода раствором соды в скруббере 5 (с последующей десорбцией СОа в отпарной колонне б) возвращаются в реактор I. Для удаления инертных компонентов часть газа периодически выводится из системы. [c.334]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Если проводить окисление в растворителе при —15°, то гидроперекись ацетила (перуксусную кислоту) можно сделать основным продуктом реакции. Этот процесс в настоящее время осваивается в промышленном масштабе. Перуксусную кислоту намерены использовать для производства окисей замещенных этиленов, действуя ею на этиленовые соединения [10]. Риче [11 ] и Хитли [12] предложили механизм реакции, поясняющий образование уксусного ангидрида. [c.336]

    Кроме спиртов, исследованных Фрицем и Шенком (см. табл. 1.2), авторы этой книги с успехом определяли этилен- и пропиленгликоль, бутандиол-1,4, октадеканол, додеканол, бутанол, октиловый, изооктиловый и аллиловый спирты. Было найдено, что этот метод неприменим для анализа эфиров полиэтилен-и полипропиленгликолей типа Н(0СНКСН2).х 0Н (где К — метил или водород), а также К(ОСН2СН2) сОН (где К — алифатический остаток или остаток алкилфенола). При анализе этих соединений получались завышенные результаты, возможно, вследствие окисления цепи хлорной кислотой с образованием гидроксильных или альдегидных групп. Некаталитический метод с использованием уксусного ангидрида также дает завышенные результаты анализа этих эфиров, однако это превышение небольшое, результаты воспроизводимы. Для определения эфиров полигликолей рекомендуется пиромеллитовый диангидрид (ПМДА). Пригоден и фталевый ангидрид, но для полноты реакции с ним необходимо 2 ч, тогда как с ПМДА требуется 30 мин и менее. [c.25]

    Если окисление алканов трудно остановить на стадии эбразования альдегидов, то этилен удается успешно окис-дить каталитически до уксусного альдегида, и этот метод се более широко применяется в промышленности Механизм каталитического окисления этилена до уксусного альдегида следующий [c.619]

    Окислением природного газа и низших углеводородов нефти получают уксусный альдегид, ацетсн, низшие кислоты. Оксид и диоксид углерода являются источником получения метанола, формальдегида, муравьиной кислоты, фосгена. Продукт пиролиза углеводородов - этилен - используется далее для получения этанола, оксирана, этиленгликоля и ряда других соединений. [c.11]

    Производства винилацетата окислением этилена в присутствии уксусной кислоты как для парофазного, так и для жидкофазного процессов имеют некоторые общие черты с точки зрения реализации в них принципов создания безотходных (малоотходных) технологий. Эти технологии характеризуются одностадийностью по химической составляющей и непрерывностью. Невысокие конверсии исходных реагентов за один проход приводят к необходимости использования рециркуляции для полного превращения сырья. Например, для жидкофазной технологии рециклы по этилену охватывают аппараты 1-3-4-1 1-3-4-6-7-1 1-3(4)-5-9-10-12-13-1 а по уксусной кислоте 1-3(4)-5-9-10 (рис. 14.5). Исходное сырье цля получения винилацетата доступно, поскольку этилен, технический кислород и уксусная кислота являются относительно де-щевыми многотоннажными продуктами. Обе технологии позволяют получать высокие (до 95 %) выходы винилацетата и, следовательно, могут быть отнесены к высокоэффективным процессам, хотя конверсии реагентов за один проход нельзя считать достаточными. В полной мере в рассмотренных технологических реще- [c.496]

    В газовой фазе хемилюминесценция сопровождает реакции окисления различных органических веществ молекулярным кислородом. Наибольшее число хемилюминесцентных реакций описано в работах Перкина [49] и Преттра [50—55]. В их опытах свечение наблюдалось визуально при пропускании через нагретую трубку смеси окисляемого вещества с кислородом или воздухом в реакциях окисления насыщенных углеводородов (пропан, н. пен-тан, н.гексан, н.гептан, н.октан) ненасыщенных углеводородов (этилен, пентен, циклогексен) алициклических и ароматических углеводородов (циклогексан, бензол, толуол) спиртов (метиловый, этиловый, н.пропиловый, н.амиловый и изоамиловый, н.гепти ловый) эфиров (диэтиловый) альдегидов (уксусный, масляный) [c.8]

    Кроме этпх соедииений в качестве проду ктов реакцпп былп идентифицированы ацетальдегид, этиловый спирт, этаи и этилен. Окисленпе 1 моля тетраэтилсвинца соировождалось образованием 0,6—0,7 моля ацетальдегида, 1,0 М0.ЛЯ этилового спирта, 0,1—0,2 моля этана и 0,2— 0,3 моля этилена. Характерно, что в реакционной смеси не происходило окисления ацетальдеыгда до уксусной [c.213]

    При каталитическом окислении бутана получают уксусную кислоту и малеиновый ангидрид (пока это практически единственные примеры промышленного использования предельных углеводородов в качестве сырья для прямого получения химических продуктов), а при его пиролизе — этилен и пропилен. При дегидрировании бутана получаются к-бутилены, применяемые в качестве промежуточного сырья для получения бутадиена, полиизопрена, метилакрилата, полиизобутиленов, бутилкаучу-ков и др. Бутадиен применяют в синтезе полибута-диенстирольного каучука, нитрильных, поли-г -бутадиеновых, хлоропреновьгх и других каучуков. [c.588]

    Освоен промышленный синтез сырья для взрывчатых веществ на основе алифатических соединений. Значительную часть формальдегида, необходимого для получения уротропина и пентаэритрита (сырья для гексогена, октогена и тэна), получают прямым окислением метана. Пиролизом метана получают ацетилен — сырье для производства тринитрометана — важнейшего полупродукта при синтезе мощных взрывчатых веществ. Этилен и ацетилен служат сырьем для получения уксусной кислоты и уксусного ангидрида [14], которые используются при производстве гексогена и октогена. [c.13]

    Дополнительные сведения можно получить, исследуя конку-, рирующее окисление Смеси этилена и пропилена в присутствии паров уксусной кислоты или воды [33]. При "пропускании смеси этилена, пропилена, кислорода и уксусной кислоты (мольное соотношение 56 14 20 10), нагретой до 110° С, в реакцию вступает лишь пропилен, который при этом на 98,5% превращается в аллилацетат и на 1,5% в СОг. Этилен, по-видимому, в силу меньшей реакционной способности в этих условиях проходит над катализато юм почти без изменений. С другой стороны, на таком же катализаторе, но при более высокой температуре (185— 190°С) совместное окисление этилена и пропилена в присутствии водяного пара (мольное соотношение С2Н4 СзНб Ог N2  [c.120]

    Полярографический метод определения молочной кислоты основан на окислении ее до ацетальдегида смесью перманганата калия—фосфорной кислоты—сернокислого магния . Для полярографического определения 17-оксистероидов предложено окислять их предварительно трет.-бути л атом алюминия до соответствующих 17-кетосоединенийзз зз9 Смесь этилен- и 1,2-про- пиленгликолей определяют после окисления их до формальдегида и уксусного альдегида .  [c.49]

    В двухстадийном варианте процесса (рис. 4.5) окисление этилена при 100— 120 °С и 0,78—1,32 МПа и окисление металлического палладия проводят раздельно. В этом случае в реактор 2, заполненный катализаторным раствором, вводят только этилен. Реакционные газы вместе с увлеченным раствором катализатора выводят из реактора сверху и направляют в отпарную колонну 3. При этом понижают давление, и весь ацетальдегид переходит в газовую фазу. Отработанный раствор катализатора из колонны 3 насосом перекачивают в регенератор 1, в который снизу подают воздух. Регенерированный раствор катализатора возвращается в реактор 2. Отходящие из отпарной колонны 3 пары ацетальдегида охлаждаются в холодильнике 4 и поступают сначала в колонну 5 для отделения от воды, а затем в колонну 6 для отделения растворенного в ацетальдегиде газа. Выход ацетальдегида на пропущенный этилен составляет 95%. Одновременно образуется 1—1,5% уксусной кислоты и 1—1,3 % хлорпроиз-водных. [c.228]


Смотреть страницы где упоминается термин Уксусный окислением этилена: [c.211]    [c.3]    [c.71]    [c.330]    [c.512]    [c.368]    [c.332]    [c.368]    [c.219]    [c.176]    [c.359]    [c.330]    [c.247]   
Введение в электронную теорию органических реакций (1977) -- [ c.440 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление этилена



© 2025 chem21.info Реклама на сайте