Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винилацетат кислорода

    Процесс ведут при 170—180 °С и 0,5—1 МПа, пропуская паро-газовую смесь реагентов через гетерогенный катализатор. Чтобы избежать образования взрывоопасных смесей, применяют избыток этилена и уксусной кислоты. При этом непревращенный этилен возвращают на окисление, что делает обязательным использование в качестве окислителя не воздуха, а кислорода. Исходная смесь состоит из этилена, паров уксусной кислоты и кислорода в объемном отношении 8 4 1. Степень конверсии их за один проход через реактор составляет соответственно 10, 20 и 60—70%. Селективность по винилацетату достигает 91—92%, а основным побочным продуктом является СО2 с образованием только 1 % других веществ (этилацетат, этилидендиацетат). [c.452]


    Технологическая схема процесса приведена на рис. 6.14. В реактор 7 подают катализаторный раствор, уксусную кислоту, этилен, кислород и циркуляционный газ [концентрация кислорода в исходном газе около 5,5% (об.)]. Реакция осуществляется при 130 °С и давлении 3 МПа. Выходящая из реактора смесь непрореагировавшего этилена, кислорода, продуктов реакции и уксусной кислоты после охлаждения в холодильнике 3 и дросселирования поступает в газосепаратор 4. Несконденсировавшиеся газы после поглощения двуокиси углерода раствором соды в скруббере 5 (с последующей десорбцией Og в отпарной колонне 6) возвращаются в реактор J. Для удаления инертных компонентов часть газа периодически выводится иа системы. Конденсат из газосепаратора 4 поступает в колонну 7, в которой отгоняются продукты реакции, включая образовавшуюся воду. Из куба этой колонны отбирается непрореагировавшая уксусная кислота, которая затем возвращается в реактор. В колонне 8 отгоняются низко-кипящие компоненты, которые для выделения ацетальдегида поступают в абсорбер 12. Поглощенный водой ацетальдегид выделяется из водного раствора ректификацией в колонне 13. Отбираемый из куба колонны 8 продукт, состоящий из винилацетата, воды и высококипящих компонентов, разделяется в отстойнике 9 на два слоя. Водный слой после извлечения следов винилацетата направляют в канализацию. Органический слой из отстойника 9 направляют для удаления воды в колонну 10, из которой смесь продуктов поступает в ректификационную колонну И, где отгоняется чистый винилацетат. Из куба колонны И выводятся высококипящие примеси. Пары воды с примесью винилацетата из верхней части колонны 10 возвращаются в колонну 8. [c.193]

    Влияние давления. Давлеиие порядка нескольких атмосфер и даже десятков атмосфер практически не влияет на процесс полимеризации. Высокое и сверхвысокое давление — 300—500 МПа (3000—5000 ат) и выше значительно ускоряет полимеризацию. Процесс полимеризации метилметакрилата в присутствии кислорода воздуха при 100 С и атмосферном давлении продолжается около б ч, а под давлением 300 МПа (3000 ат) около 1 ч, т. е. суммарная скорость полимеризации возрастает примерно в б раз. Увеличение скорости полимеризации под влиянием высоких давлений наблюдается также при полимеризации стирола, винилацетата, изопрена и других соединений. [c.79]

    Термическая полимеризация протекает крайне медленно, и скорость ее резко зависит от температуры. Многие мономеры практически не полимеризуются в отсутствие примесей. Так, винилацетат, акрилонитрил, винилхлорид, винилиденхлорид при нагревании без кислорода не полимеризуются. Другие мономеры, например метилметакрилат, полимеризуются крайне медленно, исключением является стирол, полимери-зующийся при нагревании с довольно большой скоростью. [c.65]


    Кислород и сера также могут служить ингибиторами полимеризации. По отношению к мономерам, образующим высокоактивные радикалы (например, винилацетат), кислород является типичным ингибитором. По отношению к стиролу кислород можно [c.115]

    Особое место в процессах радикальной полимеризации занимает кислород, поглощаемый мономером из атмосферы. В зависимости от природы мономера и условий полимеризации присутствие кислорода может облегчать или затруднять полимеризацию. Замедляя фотополимеризацию винилацетата, кислород в то же время ускоряет фотополимеризацию стирола. Полимеризация жидкого винилхлорида, инициированная перекисью бензоила, в атмосфере азота протекает быстрее, чем в атмосфере кислорода. [c.58]

    Винилацетат СНзСООСН=СН2 — бесцветная жидкость с т. кип. 73 °С. Получают из ацетилена и уксусной кислоты (гл. IV.4) в присутствии катализатора. Известен метод получения из этилена и уксусной кислоты в присутствии кислорода и катализатора. Винил-ацетат легко полимеризуется. Поливинилацетат широко применяется для приготовления клеев, лаков, лакокрасочных материалов  [c.578]

    Эта реакция ацетоксилирования этилена в присутствии восстановленного катализатора, в которой происходит замещение водорода в этилене группой СН СОО в присутствии кислорода. В качестве катализатора предложены хлорид и бромид палладия, ацетат палладия, металлический палладий и др. Для сравнения рассмотрим основные закономерности и технологию получения винилацетата окислением этилена в среде уксусной кислоты как на гомогенном, так и на гетерогенном катализаторах. В промышленности получили распространение два принципиально отличных друг от друга способа получения винилацетата на основе реакции 14.23  [c.484]

    Кислород в некоторых случаях также ингибирует процесс полимеризации. Он замедляет фотополимеризацию винилацетата, акриловой кислоты и ее эфиров. Для одного и того же мономера в одних условиях кислород является инициатором, в других — ингибитором. Он ускоряет фотополимеризацию стирола, но ингибирует полимеризацию стирола в присутствии персульфата калия. [c.75]

    На скорость полимеризации и молекулярную массу полимера существенное влияние оказывают различные примеси и кислород воздуха, причем кислород в зависимости от природы мономера и условий полимеризации может ускорять или замедлять полиме ризацию. Кислород замедляет фотополимеризацию винилацетата, но ускоряет фотополимеризацию стирола, ингибирует инициированную перекисью бензоила полимеризацию винилхлорида, которая с хорошим выходом полимера и высоким значением молекулярной массы протекает в атмосфере азота или аргона. Поэтому для получения полимеров используют мономеры высокой степени чистоты ( 99%) и проводят технологический процесс в атмосфере инертного газа. [c.48]

    Этот продукт может быть получен на основе этилена или-ацетилена. Процесс образования винилацетата происходит в паровой фазе по реакции оксиацетилирования из этилена, уксусной кислоты и кислорода при температуре 175—200°С и-давлении (5—10)-Ю Па в присутствии палладиевого катализатора на носителе. Реакционная смесь после реактора частично конденсируется и разделяется на жидкую и газовую фазы. Газ-рециркулят проходит через скрубберы, в которых удаляются винилацетат и диоксид углерода. Жидкий конденсат подается в систему ректификационных колонн, где легкие остатки, главным образом ацетальдегид, вода, а также полимеры, отделяются от очищенного винилацетата. Уксусная кислота возвращается в реактор. Выход составляет примерно 91% винилацетата, 8% диоксида углерода и 1% побочных продуктов (10 наименований). При этом этилен и уксусная кислота используются более чем на 99% (И9]. [c.279]

    Влияние кислорода воздуха на пp(J цесс инициирования. Кислород воздуха, в малых дозах поступающий в реакционную смесь, может служить инициатором процесса полимеризации некоторых мономеров, особенно в тех случаях, когда процесс проводят при повыщенной температуре. К таким мономерам относятся стирол, винилацетат. метилметакрилат, этилен, хлоропрен. Инициирование полимеризации этих мономеров малыми дозами кислорода связано с предварительным образованием перекисных соединений в резул -тате присоединения молекул кислорода к части молекул мономера. Разрушение образующихся перекисей ускоряется пр]1 [c.104]

    Совмещать несколько реакций в одном аппарате можно также, когда скорость протекания первой реакции зависит от скорости протекания второй, а скорость протекания второй - от скорости третьей и т. д. Характерным примером одновременного проведения трех реакций в одном аппарате может служить процесс получения ацетальдегида и винилацетата на палладиевом катализаторе. Однако такое совмещение наряду с преимуществами имеет и недостатки. В частности, очень трудно подобрать условия, которые были бы оптимальными для всех реакций, и, следовательно, некоторые из них будут протекать в неоптимальных условиях. Поэтому предпочтительно процесс проводить при наилучших условиях для лимитирующей реакции. Иногда целесообразнее проводить эти реакции в отдельных аппаратах. Это определяется, с одной стороны, эффективностью работы всего технологического комплекса, а с другой стороны, косвенными показателями (техникой безопасности, экологией и т.д.). При получении ацетальдегида и винилацетата на палладиевом катализаторе сдерживающим фактором для совмещения реакций является соотношение между этиленом и кислородом. [c.204]


    Наибольшее количество циркуляционных газов получается за счет большого избытка одного из газовых реагентов в процессе получения целевого продукта. Это обусловлено условиями проведения химического процесса и безопасностью его осуществления. Например, при производстве винилацетата из этилена и уксусной кислоты соотношение этилена и воздуха (кислорода) определяется нижними и верхними пределами взрываемости. Следовательно, должен вводиться избыток этилена или воздуха (кислорода), что приводит к созданию циркуляционных газовых потоков, в которых накапливаются инертные газы. [c.251]

    Винилацетат получают различными методами при использовании в качестве первичного исходного сырья уксусной кислоты и ацетилена или уксусной кислоты,этилена и кислорода. [c.468]

    Побочным продуктом является уксусная кислота. Если учесть, что исходные продукты (ацетальдегид и уксусный ангидрид) получаются из этилена и кислорода, то суммарный процесс получения винилацетата оказывается многостадийным. Именно это обстоятельство и послужило препятствием для его широкого распространения. [c.469]

    Все это нужно учитывать при создании технологии выделения винилацетата и регенерации непрореагировавшей уксусной кислоты. Необходимо также принять во внимание термополимеризацию винилацетата. Поэтому, несмотря на добавки ингибитора (гидрохинона с кислородом), следует прежде всего вывести винилацетат из зоны высоких температур, т, е. отделить его от уксусной кислоты и примесей, имеющих высокую температуру кипения. В связи с этим более предпочтительным оказался второй вариант разделения реакционной смеси. [c.475]

    Повыщение парциальных давлений этилена и кислорода приводит к увеличению растворимости и скорости основной реакции. При этом снижается выход этилидендиацетата. Увеличение парциального давления этилена приблизительно пропорционально увеличивает объемную производительность реактора. Например, если при парциальном давлении этилена 0,98 МПа и общем давлении 2,8 МПа получается 0,58 моль/час винилацетата, то при парциальном давлении этилена, равном 2,6 МПа, и том же общем давлении выход винилацетата доходит до 0,88 моль/час. Увеличение общего давления приводит к сокращению выхода этилидендиацетата и ацетальдегида при увеличении выхода винилацетата. В частности, при увеличении давления от 0,1 до 2,5 МПа выход этилидендиацетата уменьшается от 100 г до 16 г, а выход винилацетата увеличивается от 0,8 г до 223 г с 1л катализатора в 1 час. В связи с этим рекомендуется давление от 0,5 до 10 МПа. Чаще всего процесс проводят при 4 МПа, так как дальнейшее повышение давления практически не оказывает влияния на выход винилацетата. [c.487]

    Так как нижний предел взрывоопасной концентрации при 0,7-0,8 МПа составляет -7% (об.) кислорода, то на входе в реактор парогазовая смесь должна содержать не больше 7 % (об.) кислорода. За один проход в реакцию вступает 60—70 % кислорода. Тогда содержание кислорода в циркулирующем газе составляет 3 % (об.) по отношению к сухому газу За один проход конверсия этилена составляет 10-15% (мае.), а уксусной кислоты - 15-30% (мае.). Однако суммарный выход винилацетата и ацетальдегида в обоих процессах практически одинаков. [c.492]

    В промышленных условиях процесс первоначально ведется в присутствии [РсЮи] " и [СиС1з] без доступа воздуха. По истечении определенного времени образовавшийся ацетальдегид отгоняется из реактора и после этого реактор продувается воздухом или кислородом. При продувке воздухом Си+ легко окисляется до Си , а последний по реакции (5) окисляет [РдС ] до [Рс1С14] . Скорости реакций отдельных стадий могут изменяться при замене лигандев, например при переходе от хлоридных комплексов к бромидным скорость возрастает в 17 раз. Если процесс проводить в среде уксусной кислоты, то в результате окисления этилена образуется винилацетат. Этот процесс, открытый советскими учеными, широко применяется в практике. [c.631]

    Схема синтеза винилацетата из этилена в газовой фазе изображена на рис. 133. Смесь свежих и рециркулирующих этилена и уксусной кислоты подогревают в паровом нагревателе /, смешивают со свежим кислородом и иодают в трубчатый контактный аппарат 2 со стационарным слоем катализатора, находящегося в [c.452]

    В этом варианте процесса смесь этилена, кислорода и уксусной кислоты пропускают над палладиевым катализатором на носителе реакция идет в газожидкостной или газовой фазе. В типичном случае этилен пропускают через нагретую уксусную кислоту, чтобы получить необходимое их соотношение, а затем вводят кислород. Смесь проходит над твердым катализатором, находяшимся в трубках теплообменника. Для отвода тепла реакции применякэт кипящую под давлением воду, она омывает трубки. Продукт реакции быстро охлаждают, чтобы отделить жидкие продукты реакции от непрореагировавш уксусной кислоты. Поскольку в реакцию вступа т не весь кислород и этилен, после прохождения скрубберов, где улавливается СО2, газ снова возвращается в цикл /30, 34, 37/. Выход винилацетата составляет 90% в расчете на этилен, а выход ацетальдегида 1% и меньше. [c.288]

    Получающийся в этом процессе винилацетат—жидкость приятного эфирного запаха с т. кип. 71°—легко полимеризуется в бесцветные и прозрачные полимеры поливинилацетата винилиты, мовили-ты, гельва и т. д.) Полимеризация идет при облучении, нагреванин или в присутствии богатых кислородом катализаторов (озониды, перекиси, перхлораты и др.). Стекла из таких полимеров совершенно прозрачны, не желтеют и пропускают значительную часть ультрафиолетовых лучей последнее имеет большое практическое значение. Приме нение поливинилацетатов очень разнообразно из них готовят небьющееся стекло триплекс, каучукоподобные массы, различные имитации и др. [c.517]

    Окисление кислородом, 90° С, 92 ч в растворе бензола и кумола, добавка кумилгидропере-киси Метилметакрилат, винилацетат, стирол, акрил-амид В растворе бензола, окисли-тельно-восста-новительная система Ре —комплекс этиленди-нитротетраук-сусная кислота [c.145]

    Изучая роль кислорода в полимеризации винильных групп Барнес, Элофсон и Джонс [292] определили с помощью полярографического метода поведение пероксидов, получающихся в процессе полимеризации метилметакрилата, стирола и винилацетата. Богданецкий и Экснер [293] провели полярографическое изучение продуктов автоокисления метилметакрилата под. влиянием кислорода воздуха на фоне 0,3 М Li l в смеси бензол метанол 1 1 были обнаружены две волны первая — пероксида метакрилового эфира, вторая — метилового эфира пи-ровиноградной кислоты. При этом полярографический метод дает возможность обнаружить следы пероксида, которые не обнаруживаются другими методами. Полярографическое определение пероксида было использовано авторами для изучения кинетики его распада в щелочной среде и для контроля процесса очистки мономера от пероксидов адсорбцией на оксиде алюминия. Изучен также процесс автоокисления бутилметакрилата и показано, что пероксидный продукт представляет собой сополимер бутилметакрилата с кислородом при мольном соотношении 1 1, который при нагревании распадается на формальдегид и эфир пировиноградной кислоты. Кинетику распада этого пероксида изучали по изменению волны эфира пировиноградной кислоты в течение всего процесса. [c.196]

    Большое число содержащих кислород соединений с этиленовой связью, в том числе акролеин, метакролеин, винилацетат, аллиловый спирт, винилметилкетон, винил-метиловый эфир, 2-финилфуран, сафрол и окись бутадиена, было подвергнуто действию тетрафторэтилена. При этом [c.322]

    Введенный в реакционную смесь готовый сульфат ртути каталитически не активен, что объясняется его практической нерастворимостью в винил ацетате. Ацетат ртути является менее активным катализатором реакции винилового обмена. Реакция вив р-лового обмена принципиально отличается от реакции переэтери-фикации, в отличие от последней она не катализируется кислотами и основаниями. Скорость реакции винилового обмена пропорциональна концентрации органической кислоты и катализатора и не зависит от концентрации винилацетата. Во время реакции виниль-ная группа в в нилацетате не претерпезает никаких изменений и переносится к кислороду нуклеофильного реагента. Предложен механизм реакции винилового обмена [9], по которому в реакции участвует комплекс винилацетата с Hg+ . Последний взаимодействует с органической кислотой с образованием циклического компле сса. В результате реакции преимущественно образуется виниловой эфир с примесью этилиденового эфира, доля которого в продуктах реакции возрастает при повышении температуры реакции и ко личества минеральной кислоты  [c.19]

    Поливинилацетат получается радикальной полимеризацией винилацетата— ложного винилового эфира уксусной кислоты, образующегося при взаимодей- ствии уксусной кислоты и ацетилена либо уксусной кислоты, этилена и кислорода. В качестве инициаторов полимеризации применяются органические и неорганические перекиси, гидроперекиси и азосоединения. Кислотным или щелочным омылением поливинилацетата получают поливиниловый спирт, а при действии на его соответствующих альдегидов и кетонов — различные поливинилацетали и доливиииякетали.--—---- [c.233]

    Кроме того, выход винилацетата и ацетальдегида, конверсия исходных продуктов, выход побочных продуктов зависят от температуры и давления, при которых протекают реакции, а также от концентрации РйС1 , соотношения Рй и Си, соотношения между этиленом, кислородом и уксусной кислотой. Наиболее активно катализатор работает при температуре 100-130 °С. Температура оп- [c.486]


Смотреть страницы где упоминается термин Винилацетат кислорода: [c.113]    [c.113]    [c.673]    [c.707]    [c.453]    [c.20]    [c.21]    [c.631]    [c.29]    [c.272]    [c.132]    [c.44]    [c.495]    [c.4]    [c.377]    [c.4]    [c.171]    [c.330]    [c.207]    [c.211]    [c.489]    [c.490]   
Поливиниловый спирт и его производные Том 2 (1960) -- [ c.108 , c.123 , c.127 ]

Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.244 , c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Винилацетат



© 2025 chem21.info Реклама на сайте