Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрод в инверсионной вольтамперометрии

    Не менее универсальным и эффективным способом повышения отношения фарадеевский сигнал/помеха является предварительное накопление определяемого вещества в объеме или на поверхности индикаторного электрода - инверсионная вольтамперометрия. Такой метод широко используется в аналитической практике, ибо в сочетании с тем или иным аппаратурным методом позволяет значительно снизить нижнюю границу определяемых концентраций. [c.316]


    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]

    Ключевые слова инверсионная вольтамперометрия,свинец,бензин, стеклоуглеродный электрод,фоновый раствор,накопление,растворение. предел обнаружения. [c.114]

    Разновидности полярографического метода обусловлены видом поляризующего сигнала. Среди них мы рассмотрим, как имеющие наибольшее аналитическое применение, постояннотоковую, импульсную и переменнотоковую полярографии. Кроме того, рассмотрим методы, в которых в качестве индикаторного используют преимущественно твердый электрод, так называемые вольтамперометрию со стационарным электродом и инверсионную вольтамперометрию. [c.272]

    Инверсионная вольтамперометрия. Чувствительность определения ионов металлов и неметаллов можно сильно повысить, применяя метод инверсионной вольтамперометрии. Этот метод отличается некоторыми преимуществами по сравнению с рассмотренным выше классическим полярографическим методом. Существует несколько вариантов метода. Во всех вариантах первой стадией процесса является предварительное электрохимическое концентрирование определяемых веществ, что приводит к существенному повышению чувствительности определений. В большинстве случаев вместо токсичного ртутного электрода используют твердый электрод из какого-либо материала, чаще всего из спектрально чистого графита, пропитанного эпоксидной смолой с полиэтиленполи-амином. Метод позволяет определять не только полярографически активные ионы, но также ионы, которые не поддаются прямому полярографированию. [c.498]


    Радикальным способом повышения отношения сигнал/шум в вольтамперометрии является электрохимическое концентрирование определяемого вещества. Для этих целей удобно выделять определяемый компонент на поверхности индикаторного электрода электролитически, подобрав соответствующее значение потенциала электролиза, а также с помощью окислительно-восстановительных реакций или в результате адсорбции. Полученный концентрат затем может быть подвергнут электрохимическому превращению. Поскольку содержание определяемого вещества в концентрате на несколько порядков выше по сравнению с раствором, величина аналитического сигнала резко возрастает. Этот подход используется в инверсионной вольтамперометрии (ИВА). [c.413]

    Таким образом, инверсионная вольтамперометрия - это метод электрохимического анализа, в котором для снижения нижней границы определяемых концентраций используется предварительное концентрирование анализируемого компонента на рабочем электроде с помощью различных электрохимических или химических реакций, в том числе и за счет адсорбции, с последующей регистрацией вольтамперограммы концентрата. [c.413]

    Наиболее воспроизводимые результаты получаются при использовании СРЭ. При этом определяемые металлы концентрируются на электроде в виде амальгамы. Этот вариант ИВА появился раньше других и до последнего времени был самым распространенным. Его появление во многом определило развитие инверсионной вольтамперометрии. В литературе имеется богатый материал по инверсионной вольтамперометрии со стационарными ртутными электродами. [c.417]

    В отличие от 5-элементов ионы /-элементов I и II групп являются традиционными объектами инверсионной вольтамперометрии. При этом медь, цинк и кадмий можно определять как на ртутных, так и на твердых электродах. Способы их определения подробно описаны в литературе. [c.418]

    Из этого выражения видно, что скорость перемешиваю раствора - важный параметр, который всегда следует, учитывать. Для повышения эффективности электролиза ее увеличивают до тех пор, пока ртутная капля еще удерживается на висящем ртутном капельном электроде или пока не наступит нежелательная кавитация раствора. Увеличение поверхности электрода также можно использовать для оптимизации процесса осаждения металла. Поскольку процесс растворения концентрата выполняют на том же электроде, что и процесс электролиза, в инверсионной вольтамперометрии не применяют электроды с большой поверхностью. Площадь поверхности электрода в этом методе близка к таковой в обычном полярографическом или вольтамперометрическом эксперименте. [c.420]

    Если металл не образует амальгаму или его растворимость в ртути невелика, то для его накопления используют твердые электроды. Образование осадков на поверхности твердых электродов происходит в результате процессов кристаллизации. По применению твердых электродов в инверсионной вольтамперометрии и процессам электрокристаллизации имеется обширная литература. Рассмотрим некоторые положения, относящиеся к электроосаждению металлов на электродах, которые необходимо учитывать при проведении аналитических определений. [c.425]

    Ширина анодных пиков растворения металлических осадков, как и в случае инверсионной вольтамперометрии амальгам, зависит от характеристик процесса ионизации обратимости, наличия химических стадий и т.д. Например, ионизация металла на поверхности электрода может протекать в условиях, когда в растворе присутствуют комплексообразующие компоненты  [c.427]

    Заметим, что этот процесс может осуществляться по механизму, являющемуся комбинацией двух последних, т.е. ионы образуют комплексы с адсорбированными на электроде лигандами. В табл. 11.4 приведены условия определения некоторых металлов методом инверсионной вольтамперометрии после адсорбционного концентрирования. С помощью адсорбционного концентрирования можно проводить определение около 30 элементов, включая ТЬ, Zr, [c.433]

    Наиболее просто закрепление модификатора на поверхности электрода осуществляется с помощью физической или химической адсорбции. Ее преимущество состоит в том, что она не требует специальных реагентов для присоединения модификатора к электроду достаточно провести активацию и очистку поверхности перед модифицированием. Однако время жизни такого электрода относительно невелико, поскольку модификатор постепенно уходит в раствор вследствие десорбции. Этот способ модифицирования электродной поверхности широко применяется в инверсионной вольтамперометрии (см. раздел 11.3). Кроме того, он применяется [c.479]

    Способы предварительного концентрирования определяемых веществ, которые связаны с использованием ХМЭ, условно можно разделить на две группы. В первой из них снижение нижней границы определяемых концентраций достигается за счет адсорбции деполяризатора на электроде. Это явление широко применяется в инверсионной вольтамперометрии и подробно рассмотрено в разделе [c.490]


    Последовательное осуществление процессов (2) и (3) составляет цикл разряда-ионизации ЗЬ на стационарных ртутных электродах, лежащий в основе инверсионной вольтамперометрии [86, 1478], иногда называемой также амальгамной полярографией с накоплением [362, 368, 693, 725]. Процесс (2) описывает предварительное концентрирование ЗЬ с образованием амальгамы, а процесс (3)— анодное растворение ее из полученной амальгамы. [c.62]

    Для определения Sb методом инверсионной вольтамперометрии весьма перспективно применение ртутно-графитовых электродов [270, 463-465, 525, 526, 533, 605, 628, 1065. В отличие от стационарных ртутных электродов, для получения ртутно-графитового электрода не требуется каких-либо дополнительных операций, поскольку электрод образуется в процессе электролиза анализируемого раствора, в который вводится определенное количество соли Hg(II) [1065]. Применение ртутно-графитового электрода по сравнению с графитовым позволяет понизить предел обнаружения Sb практически на порядок и исключить образование интерметаллических и химических соединений Sb с другими элементами и тем самым устранить их мешающее влияние на определение Sb. [c.67]

    В методе [465] для устранения мешающего влияния Bi, Fe и u их отделяют экстракцией хлороформным раствором диэтилдитиокарбамината цинка, предварительно окислив Sb(III) до Sb(V) бромной водой. Из оставшейся водной фазы экстрагируют Sb с применением диэтилдитиокарбамината натрия, из экстракта Sb реэкстрагируют соляной кислотой и определяют методом инверсионной вольтамперометрии с применением ртутно-графитового электрода. Предел обнаружения Sb 10 нг л. [c.158]

    Интервал определяемых концентраций 10 —10 М, нижний предел определений в методе с, линейной разверткой напряжения и в переменнотоковой полярографии достигает 10 и в инверсионной вольтамперометрии—10 М, при определении малых концентраций погрешность не превышает 3%. Метод достаточно селективен разрешающая способность по потенциалам (полярографические волны не сливаются) в классической полярографии 100—150 мВ, в переменнотоковой и в полярографии с линейной разверткой напряжения — 30—50 мВ. Разрешающая способность может быть увеличена, если регистрировать кривую AIlAE = f E). При этом на полярограмме при E = Ei/ наблюдается максимум, высота которого пропорциональна концентрации. Дополнительного разделения полярографических волн можно достичь, используя в качестве фонового электролита комплексо-образующий реагент. Например, раздельное определение ионов Со2+ и N 2+ в смеси на фоне 1 М раствора КС1 затруднительно Ei/ =—1,2 и —1,1 В соответственно), тогда как на фоне 1 М раствора KS N эти значения изменяются до —1,3 и —0,7 В. Метод быстр в исполнении единичные измерения занимают несколько минут и могут быть повторены для одного и того же раствора многократно (практически истощение деполяризатора в растворе не происходит). Ограничения метода полярографического анализа связаны с использованием ртутного электрода. [c.144]

    Осознание важности экологических проблем заставляет исследователей привлекать для контроля суперэкотоксикантов все современные высокочувствительные методы аналитической химии. Так, при определении низких содержаний ионов высокотоксичных металлов в основном применяются методы оптической спектроскопии и люминесценции (атомноэмиссионная спектроскопия с возбуждением от высокочастотного плазменного факела (ИСП-АЭС), атомно-абсорбционная спектроскопия (ААС) с электротермической атомизацией и др.) (3 , а также инверсионная вольтамперометрия (ИВА) с химически модифицнрова1Шыми электродами [41. Для определения органических загрязнителей наряду с хроматографией наблюдается тенденция к более широкому использованию хромато-масс-спектрометрии, иммунохимических и флуоресцентных методов 2,5 Следует заметить, что в области разработки методов контроля за состоянием загрязнения природных сред суперэкотоксикантами имеется много нерешенных проблем В первую очередь это относится к методам экспрессного определения органических веществ. [c.244]

    Дальнейшего повышения чувствительности определений достигают в методе инверсионной вольтамперометрии, применяя электролитическое концентрирование вещества на электроде. Собственно определение заключается в расгво-зении ранее выделенного на поверхности электрода вещества (stripping апа-ysis). Повышение чувствительности связанно с фактором накопления, который для стационарных электродов может достигать 1000. При концентрировании веществ должна воспроизводимо поддерживаться скорость перемешивания, поскольку только при высокой скорости перемешивания максимумы тока не зависят от этой величины. Значение тока растворения (рис. Д.127) возрастает вначале линейно, а затем стремится к предельному значению. Поэтому выделение с концентрированием проводят не количественно, а только в течение определенного промежутка В(ремени. [c.307]

    В случае простой инверсионной вольтамперометрии с применением ртутного капельного электрода можно обнаруживать до 10 з мкг/см при небольшой селективности. При переходе к дифференциальным импульсам предел обнаружения достигает 10"5 мкг/см при хорошей селективности. Если к тому же заменяют ртутный капельный электрод слоем ртути, нанесенным на стеклографит, чувствительность обоих методов возрастает в 100 раз, в то время как селективность не изменяется. [c.416]

    Состав и свойства поверхностных фаз. Ввиду слабой чувствительности спектроскопических методов (ЭСХА, КР, различные зондовые методы) для идентификации образующихся поверхностных фаз, мы применили метод инверсионной вольтамперометрии с угольным пастовым электроактивным электродом - УПЭЭ. Нахождение анализируемого вещества в мелкодисперсном состоянии позволяет преодолеть трудности, связанные с введением нерастворимого электроактивного вещества в сферу электродной реакции. [c.120]

    Как уже было указано, к собственно вольтамперометрии относят изучение и использование зависимостей ток - потенциал, полученньк в электролитической ячейке с любым электродом, кроме капающего ртутного электрода. Различают прямую, инверсионную и косвенную волътампе-рометрию (амперометрическое титрование). Индикаторным электродом обычно служит вращающийся платиновый или графитовый электрод. В инверсионной вольтамперометрии применяют также стационарный ртутный электрод (висящая ртутная капля) и пленочные ртутные электроды. Индикаторные электроды, изготовленные из платины или графита, отличаются от капающего ртутного электрода тем, что имеют другую область поляризации и поверхность их во время регистрации вольтамнерограммы не возобновляется. На рис. 87 дано сравнение интервалов потенциалов поляризации платинового, графитового и ртутного электродов. Область поляризации любого электрода, доступная для изучения электрохимических реакций, ограничивается потенциалами разряда фона, то есть электрохимическими реакциями с участием компонентов фонового электролита и материала электрода. [c.181]

    Эти электроды широко применяются в инверсионной вольтамперометрии, причем очень часто РПЭ изготавливают в ходе анализа, т е. in situ. Поскольку за время предэлектролиза на РПЭ образуется амальгама с более высокой концентрацией металла, то пределы обнаружения металлов, образующих амальгаму, понижаются на несколько порядков. Недостатком РПЭ на металлических подложках является нестабильность толщины и состава ртутной пленки из-за проникновения ртути вглубь металла и образования разных по концентрации амальгам, а также взаимодействие определяемых компонентов с металлом подложки. [c.87]

    Осадки малорастворимых соединений могут образовываться и при взаимодействии определяемых компонентов с материалом электрода. Так, например, при анодной поляризации ртутного или серебряного электрода наблюдается электрохимическое растворение материала электрода с образованием ионов или А ", которые могут взаимодействовать с компонентами раствора с образованием малорастворимых осадков на электроде. Последние растворяются при обратном цикле поляризации электрода и дают соответствующий аналитический сигнал. Этот способ используют в основном для инверсионно-вольтамперометрического определения анионов СГ, Вг , Г, а также Сг04 , УОз", У04 и Мо04 , Нижняя граница определяемых концентраций для различных анионов лежит в пределах от 10 до 10" моль/л в зависимости от растворимости соответствующих осадков, В настоящее время инверсионная вольтамперометрия анионов находит ограниченное применение, поскольку существует достаточное количество методов их определения с более высокими метрологическими характеристиками и меньшей трудоемкостью. [c.428]

    Способ адсорбционного концентрирования (как комплексов металлов с органическими лигандами, так и органических соединений) по своему принципу близок к рассмотренному в предыдущем разделе. Особую популярность он получил в последние годы. Благодаря адсорбционному концентрированию с помощью инверсионной вольтамперометрии удается определять щелочные и щелочноземельные металлы, элементы подгруппы алюминия и иттрия, не говоря уже о традиционных для инверсионной вольтамперометрии элементах, таких как 8п, РЬ, Сс1 и др. Как правило, адсорбционное концентрирование связано с применением поверхностно-активных веществ, вводимых в анализируемый раствор. При этом существенно, чтобы потенциалы электропревращения органического реагента и его соединения с металлом различались на максимально возможную величину. Преимуществом адсорбционного концентрирования является также слабое влияние потенциала электрода на адсорбцию комплексов, что позволяет проводить концентрирование даже при разомкнутой цепи. Нижняя граница определяемых концентраций в ряде случаев, например при определении серосодержащих соединений, достигает 10 - 10 моль/л и ниже. [c.431]

    Видно, что влияние составляющей уменьшается с увеличением скорости развертки потенциала и с уменьшением радиуса электрода. Применение больших скоростей развертки поляризующего напряжения позволяет уменьшить влияние растворенного кислорода и других электроактивных примесей до величины аналитического сигнала. Та1с при инверсионно-вольтамперометри-ческом определении МО моль/л свинца (рис. 11.8) на ультрамикроэлектроде из углеродного волокна при скорости развертки потенциала 300 В/с форма вольтамперограмм практически не зависит от присутствия кислорода в растворе, тогда как в обычных условиях пик растворения свинца сливается с кривой фона. [c.437]

    Вольтамперометрии включает методы микроэлектролнза, в которых потенциал индикаторного электрода создается внешним источником и является известной функцией времени, а получаемые зависимости ток —потенциал и ток-время служат источником информации о составе раствора. В зависимости от вида развертки потенциала и механизма массопереноса, различают вольтам-перометрию с линейной разверткой потенциала (вольтампера/летрию при постоянном токе), методы со ступенчатым изменением потенциала, гидродинамические методы и инверсионную вольтамперометрию. [c.411]

    Инверсионная вольтамперометрия. Пределы обнаружения Sb(III) при использовании ртутных капающих электродов методами осциллографической [291] и переменнотоковой [116, 118] полярографии находятся на уровне и-10 г-ион1л. Однако в ряде случаев указанные пределы обнаружения Sb часто недостаточны для контроля ее содержания в материалах высокой чистоты и в материалах, используемых в электронной технике, ядерной физике и т. д. Для снижения пределов обнаружения Sb в последнее время успешно используется метод инверсионной вольтамперометрии [86, 233, [c.65]

    При определении Sb методом инверсионной вольтамперометрии с применением твердых электродов возникают специфические осложнения, связанные с кристаллизацией ее на твердой электродной поверхности, что может отразиться на форме и величине регистрируемого аналитического сигнала. Кроме того, на поверхности твердых электродов, как правило, более сильно проявляется взаимодействие Sb с другими совместно электроосаждаемыми элементами [628] с образованием как интерметаллических [1498], так и химических [174, 531] соединений. На стадии предэлектролиза на твердых (платиновых и графитовых) электродах создаются условия для совместного осаждения с сурьмой Си [530], 8е [531], Те [1498], Аи [529], Ag и Ni [1672]. [c.67]

    Ртутно-графитовый электрод имеет большое сходство с ртутным пленочным электродом, который нашел широкое применение в инверсионной вольтамперометрии [270]. Показано [525], что минимальное количество ртути, необходимое для определения Sb с применением ртутно-графитового электрода, равно 12-кратному по отношению к Sb. Малые количества ртути не оказывают заметного влияния на ионизацию электроосажденной Sb. При содержаниях Sb и Hg, близких к эквивалентным, образуются твердые растворы. Для устранения указанных осложнений и правильного определения Sb с применением ртутно-графитовых электродов рекомендуется вводить в раствор не менее чем 100-кратные количества Hg(II). [c.67]

    Электроосаждение наиболее часто используется при определении микроколичеств Sb методами инверсионной вольтамперометрии (см. главу IV). Миллиграммовые количества Sb осаждают при контролируемом потенциале в виде элементной Sb для ее гравиметрического определения [47, 279, 849—852]. Из лимоннокиС лого раствора Sb можно отделить от Bi и Sn [1025]. Описан [89] метод отделения, основанный на электроокислении Sb(III) до Sb(V) на графитовом электроде при потенциале 0,8 в в растворах НС1 в присутствии родамина С, образующего на электроде с Sb(V) осадок гексахлоростибата родамина С, используемый для последующего определения Sb методом инверсионной вольтамперометрии. Для выделения радиоактивной Sb, а также d, Pd и Ag из смеси продуктов деления рекомендован метод внутреннего электролиза в среде 5 М Na l с использованием ячеек с разделенными катодным и анодным пространствами [1616]. [c.117]

    О 1-10 %) методом инверсионной вольтамперометрии с применением графитового настового электрода. Один из спектральных методов определения 8Ь (а также РЬ, Ag и Си) предусматривает использование литых образцов висмута ( = 9 мм) [809]. Спектры возбуждают искровым разрядом от генератора ИГ-2 (1,1 а, 0,55 мгн, 0,01 мкф), спектрограф ИСП-22, экспозиция 50 сек. При содержании 8Ь и-10 — 10 % ошибка определения 5—10%. По другому спектральному методу 8Ь из висмута предварительно выделяют соосаждением с Н28ПО3. При использовании навески массой 5 3 предел обнаруягения достигает 1-10 % 8Ь ( 0,1) [477]. Большинство активационных методов позволяет определять в висмуте 8Ь без раетворения пробы с высокой чувствительностью (до 10 %) [830, 1204, 1239]. Методы, включающие растворение облученного образца и выделение 8Ь, используются редко [1659]. [c.126]

    Это группа высокочувствительных селективных методов определения малых количеств веществ (чаще - примесей, реже - основных компонентов) осуществляемых по принципу предварительного электролитического накопления (электроконцентрирования) вещества на поверхности индикаторного электрода и последующего его электрохимического или химического растворения [22, 23]. Информативной стадией является растворение электрохимического концентрата при линейно меняющемся напряжении (инверсионная вольтамперометрия) или постоянном токе (инверсионная хронопотенциометрия). [c.317]

    Электровосстановление мышьяка(1П) до элементного состояния может быть использовано для концентрирования мышьяка на поверхности стационарных электродов. Трушина и Каплин [419] исследовали возможность концентрирования мышьяка на платиновом дисковом электроде с последуюш ей регистрацией тока анодного растворения полученного осадка. Изучение влияния ряда факторов (времени предварительного концентрирования, потенциала предэлектролиза, состава фона и концентрации ионов других элементов) показало, что в растворах КС1 и НС1 определению мышьяка методом инверсионной вольтамперометрии не мешает свинец и определение мышьяка можно проводить совместно с Ag, Au, Hg. Чувствительность определения мышьяка в 1 М H I достигает 2-10 молъ/л, что на порядок выше чувствительности переменнотоковой полярографии. К такому же выводу пришли и другие исследователи [345, 346], определявшие мышьяк методом инверсионной вольтамперометрии на графитовых электродах. [c.84]

    Таким образом, образование арсенидов ряда металлов, обнаруженное в работах с ртутным капаюш,им электродом, нашло практическое применение для определения мышьяка методом инверсионной вольтамперометрии. [c.85]

    Мышьяк отгоняют в виде бромида, галлий экстрагируют диэтиловым эфиром из солянокислого раствора и определяют методом осцнллополярографин Амальгамная полярография с накоплением на фоне солей мышьяковой кислоты Мышьяк отгоняют в виде бромида, галлий экстрагируют эфиром из 6—7 N НС1 и определяют методом инверсионной вольтамперометрии на стационарной ртутной капле или электроде из угольной пасты Амальгамная полярография с накоплением солянокислый фон [c.199]


Смотреть страницы где упоминается термин Электрод в инверсионной вольтамперометрии: [c.6]    [c.150]    [c.278]    [c.291]    [c.133]    [c.136]    [c.66]    [c.186]    [c.93]    [c.431]    [c.430]    [c.68]   
Полярографические методы в аналитической химии (1983) -- [ c.289 , c.294 ]




ПОИСК





Смотрите так же термины и статьи:

Анциферов, С. И. Синякова. Применение углеграфитовых электродов в инверсионной вольтамперометрии (обзор)

Вольтамперометрия

Вольтамперометрия инверсионная

Вольтамперометрия электрод

Электроды в инверсионной вольтамперометрии твердых фаз



© 2025 chem21.info Реклама на сайте