Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектральный анализ количественный

    Разработанные ранее масс-спектрометрические методы анализа нефтяных фракций дают сведения о их групповом составе и позволяют установить наиболее типичные молекулярные структуры внутри любой группы соединений, рассматриваемой как один тип. Эта задача решается снятием и анализом полученных масс-спектров, сопоставлением качественных и количественных данных масс-спектров индивидуальных соединений и узких фракций со спектрами выделенных из нефтяного продукта концентратов, содержащих в основном определенный тип соединений. Снятие и обработка масс-спектров усложняются по мере утяжеления нефтяного сырья, каким являются изучаемые в данной работе экстракты остаточной нефти. В связи со сложностью состава и широким диапазоном изменения молекулярной массы, с преобладанием высокомолекулярной части масс-спектральный анализ не позволяет так определить количественное содержание групп по определенным структурным признакам, чтобы разница масс-спектров соедине- [c.59]


    Количественный масс-спектральный анализ основан на пропорциональности интенсивности всех линий масс-спектра каждого из веществ его парциальному давлению в области ионизации. Поэтому [c.138]

    Количественный масс-спектральный анализ [c.305]

    Количественный масс-спектральный анализ построен на том, что токи ионов, образующихся из данного вещества, пропорциональны парциальному давлению этого вещества в анализируемой смеси, поэтому применим принцип аддитивного наложения масс-спектров. При анализе смесей веществ, масс-спектры которых по массовым числам содержащихся в них линий частично или полностью (как в случае изомеров) совпадают, расчет состава смеси состоит в решении системы линейных уравнений. Пример аддитивного наложения масс-спектров для смесн 50% этана и 50% этилена показан на рис. 5. [c.462]

    Комбинация газовой хроматографии и масс-спект-рометрии представляет собой чувствительный, специфичный и удобный метод анализа. Сущность хромато-масс-спектрального анализа заключается в том, что многокомпонентную смесь разделяют на хроматографической колонке, а идентификацию и количественный анализ проводят на масс-спектрометре. Для получения масс-спектра соединения его в газообразном состоянии подвергают диссоциативной ионизации, что приводит к образованию набора осколков, характеризующих исходную молекулу. [c.48]

    Масс-спектрометрия приобрела большое значение особенно в области исследования углеводородов нефти, качественный и количественный состав которой определяется с точностью до +5% от каждого компонента смеси. Применение метода сравнения повышает точность масс-спектральных анализов. Для этого, наряду с масс-спектрограммой газовой смеси, снимают при одинаковых условиях спектры отдельных чистых газовых компонентов этой смеси. При таком методе анализа состава газовой смеси относительные ошибки в определении отдельных компонентов смеси снижаются до 1 %. [c.255]

    На чем основан количественный масс-спектральный анализ  [c.283]

    КОЛИЧЕСТВЕННЫЙ МАСС-СПЕКТРАЛЬНЫЙ АНАЛИЗ [c.75]

    Масс-спектроскопия. Масс-спектральный метод анализа основан на ионизации потоком электронов в паровой фазе под глубоким вакуумом исследуемой углеводородной смеси. Образующийся при этом поток ионов в магнитном поле делится на группы в зависимости от их масс. Ионизацию ведут таким путем, что происходит не только ионизация, но и распад молекул углеводородов с образованием осколочных ионов. Между структурой соединения и его масс-спектром существуют определенные зависимости, которые и положены в основу количественного анализа этим физическим методом. Для каждого класса углеводородов характерно образование определенного ряда осколочных ионов. В магнитном поле, в зависимости от массы и заряда, полученные ионы движутся по различным траекториям. В конечном итоге ионы направляются на фотопластинку, и на ней получается масс-опектр. Каждый углеводород дает на масс-спектрограмме свои характерные полосы, по которым ведется в дальнейшем расшифровка спектрограмм. [c.62]


    Масс-спектральный метод позволяет проводить анализ химического состава смесей и элементный анализ. Возможен качественный и количественный анализ. Количественный анализ основан на пропорциональности интенсивности линий масс-спектра каждого из веществ его парциальному давлению в области ионизации. Суммарный масс-спектр аддитивно складывается из масс-спектров всех компонентов смеси. Можно анализировать все смеси (газы, жидкости, твердые), которые в ионизационной камере прибора полностью испаряются без разложения компонентов. Эффективность масс-спектрометрии как метода молекулярного анализа сильно увеличивается при его комбинациях с хроматографией, инфракрасной и ультрафиолетовой спектроскопией. Особенно эффективна комбинация с хроматографией, когда [c.451]

    Методы масс-спектрометрии основаны на получении ионов определяемого элемента, их последующем разделении в магнитном поле (или другими средствами) по величине отношения т е (где т — масса иона, е — величина его заряда) и регистрации спектра полученных групп частиц. Они применяются в аналитической химии брома для количественного определения изотопов и для структурного анализа смесей гомологов по их молекулярной массе. Наиболее универсальные варианты — метод вакуумной искры и метод ионной бомбардировки, как и оптический спектральный анализ, позволяют одновременное определение большого числа элементов. Однако масс-спектры отличаются от оптических спектров отсутствием мертвых зон и в меньшей мере обременены помехами со стороны элементов-спутников, что обеспечивает более высокую чувствительность анализа, достаточную для решения ряда специальных задач химии материалов очень высокой степени чистоты. [c.158]

    Стабильность электронных блоков, необходимая для количественного анализа, зависит от требуемой точности и выбранной разрешающей способности Эту величину можно оценить, исходя из гауссовой кривой, изображающей форму масс-спектрального пика [112 Определение разрешения по 10 % ной долине соответствует величине ординаты на расстоянии [c.63]

    В книге сохранено описание большинства процедур предварительной характеристики вещества, опубликованных в предыдущих изданиях (определение температур плавления и кипения, выяснение характера растворимости и т. п.). Однако при обсуждении этих операций описаны также соответствующие наиболее современные приемы (например, проверка чистоты веществ с помощью тонкослойной хроматографии и др.). Раздел о качественном элементном анализе (путем сплавления с натрием) дополнен описанием использования масс-спектрометрии и других новейших методов одновременно для качественного и количественного анализа. Мы рекомендуем определять молекулярную массу веществ с помощью описанных в настоящей книге методов масс-спектрометрии или осмометрии в паровой фазе вместо приведенного в предыдущих изданиях метода Раста, основанного на измерении понижения температуры замерзания. Этот метод слишком часто приводит к неудачным результатам. В соответствии с многочисленными пожеланиями читателей в настоящем издании группы растворимости вновь обозначены буквами латинского алфавита (5], Зг, А1 ит.д.), как и в четвертом издании. Кроме того, характеристики растворимости дополнены указаниями об отношении к органическим растворителям. Это приводит к результатам, полезным для спектрального анализа, хроматографического анализа и для перекристаллизации. [c.10]

    В дополнение к определениям температуры пара и показателя преломления, которые обычно применяются для того, чтобы следить за течением разгонки и как средство интерпретации результатов разгонки, применяются также исследования других физических свойств, которые позволяют получить более полную картину исследуемой смеси. Так, иногда определяются плотности, вязкости, вращение плоскости поляризации света и температуры плавления. Обычно эти методы применяются лишь тогда, когда показатель преломления или точки кипения или обе величины вместе не дают точного ответа. Исследование вращения поляризованного света применяется к таким природным продуктам, как терпены и их производные. Температуры плавления и застывания имеют более широкое применение, в частности как критерий чистоты. Применение температур плавления получило значительное распространение в недавних исследованиях углеводородов, плавящихся при низких температурах [157]. Методы таких физических измерений могут быть найдены в книгах, посвященных физико-химическим методам [130], или в оригинальной литературе. Более широко применяются анализы с помощью ультрафиолетовых, инфракрасных спектров, спектров комбинационного рассеяния и масс-спектрального метода как для качественных, так и для количественных определений. [c.264]


    Принципиальная возможность определения примесей газов в металлах масс-спектральным методом вакуумной искры очевидна для доказательства этого достаточно сопоставить давление пара пробы вблизи канала искрового разряда (10 —10 тор) [27] и давление остаточного газа вакуумной системы (10 тор). Однако количественная расшифровка при определении кислорода затруднена из-за повышенного по сравнению с элементами основы и примесей выхода его ионов, который к тому же еще зависит от природы анализируемых веществ и состояния их поверхностей. Применение стандартов решает проблему количественного анализа, но абсолютная [c.40]

    Несмотря на то что относительное содержание концевых групп или атомов чрезвычайно мало, при тщательно подобранной методике их определения можно вычислить среднечисловую молекулярную массу до 5-10 на основании химического и спектрального анализов, а использование концевых групп с мечеными атомами позволяет определить значение Мп ДО 10 . При этом непременными условиями определения молекулярной массы по концевым группам являются точное знание числа функциональных групп в макромолекуле и возможность их количественного определения. [c.110]

    Инструментальные методы анализа — количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К И, м. а. обыч1ю относят 1) электрохимические методы— потенциометрию, полярографию, кондуктометрию и др. 2) методы, основанные на испускании или поглощении излучения,— эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др. 3) масс-спектральный анализ 4) методы, основанные на измерении радиоактивности. Имеются и другие И. м. а. [c.57]

    Количественный анализ хлорпроизводных углеводородов. В табл. 1 приведены интенсивности пиков, отвечающих характеристическим ионам в спектрах монохлоралкилциклогексанов и хлорпроизводных углеводородов при их минимальном взаимном наложении. В последней графе табл. 1 указаны коэффициенты чувствительности максимальных пиков по отношению к 91 пику толуола, вычисленные в молярных процентах. Информация, содержащаяся в табл. 1, достаточна для проведения количественного масс-спектрального анализа хлорпроизводных углеводородов на любом приборе с системой ввода образца, обогреваемой до 100° С. [c.305]

    Одной из основных характеристик количественного масс-спектрального анализа является коэффициент относительной ионизуемости, или коэффициент чувствительности, связывающий интенсивность ионного тока и количество образца, вводимого в ионный источник. [c.127]

    Изложены основные принципы молекулярного масс-спектрального анализа углеводородов и ге--тероатомных соединений в нефтях, продуктах переработки нефти, угля, горючих сланцев. Рассматриваются вопросы представления масс-спектров сложных смесей, выделения аналитических признаков и определения калибровочных коэффициентов, методы качественного и количественного анализа группового состава. Приведены методики анализа насыщенных и ароматических углеводородов,, серо-, азот- и кислородсодержащих соединений и примеры их определения в нефтях. [c.239]

    Ввиду чувствительности поведения высокомолекулярпых нефтяных систем к воздействию традиционно считающихся мягкими факторов, таких как неполярные углеводородные растворители [3], представляются малоперспективными попытки создания регламентированных многостадийных методик количественного препаративного выделения, а затем анализа состава смесей высокомолекулярных нефтяных компонентов. Более уместно говорить о перечне использованных либо рекомендуемых ирепаративпых операций, приемов и аналитических методов для исследования состава конкретного исходного нефтяного образца. Поэтому к обработке данных масс-спектрального анализа таких образцов можно подходить с самым минимумом априорных предиоложепий о характере, типах и количестве классов и групп соединений, содержащихся в исследуемом объекте, рассматривая каждый образец как уникальный. [c.114]

    Наряду с обычными методами определения галоидных соединений фтора все большее значение приобретают инструментальные методы — газо-жидкостная хроматография и масс-спектральный анализ. Метод газо-жидкостной хроматографии дает возможность проводить количественные определения агрессивных фторидов. Таким путем были проанализированы смеси lj, GIF, GIF3, HF и UFg [20]. Кроме того, отдельно были получены кривые для Вга и BrFg, так как в смеси с фторидами хлора эти вещества не могли быть определены из-за взаимодействия соединений. Масс-спектральный анализ применяют для быстрого качественного определения фторидов галогенов [21]. [c.312]

    Большинство методов количественного ультрамикрохимического анализа основано на измерении какого-либо параметра, функционально связанного с массой. Это, прежде, всего, титриметрические и фотометрические методы. Важным преимуществом физико-химических методов является то, что при их использовании нет необходимости брать навески на высоко точных и чувствительных ультрамикровесах, так как микронавеска может быть взята и отбором аликвотной части раствора. При анализе жидкостей измеряют объем, взятый для анализа. В физических методах, как, например, эмиссионном спектральном, рентгеноспектральном, масс-спектральном анализе навески нЗ микровесах вообще не берут. Конечно, и в этих методах точность анализа зависит во многом от погрешности приборов. Во всяком случае в ультрамикроанализе, так же как и в микроанализе, случайные ошибки приборов составляют, по крайней мере, треть погрешности, вызываемой химическими факторами [c.183]

    Применение названных физических методов в исследовт -нии строения и состава сераорганических соединений, выделенных из нефти, в значительной мере повлияло на результативность и эффективность проводимых в этой области исследований. Теперь стало возможным, особенно с помощью количественного масс-спектрального анализа, получение большого и достаточно точного объема информации. [c.43]

    Эффективность стабилизации топлива антиокислительной присадкой зависит от ее кинетических характеристик (емкости, эффективности) и концентрации в топливе. Поэтому контроль за содержанием присадки в топливах чрезвычайно важен. Азотсодержащие присадки, в частности производные га-фени-лендиаминов, можно определить в топливах методами химического анализа качественно в концентрации 0,0005% (масс.) 278] и количественно в концентрации 0,001% (масс.) и выше 278, 120, с. 196—205]. Чувствительность описанных в литературе методов химического, спектрального, полярографического анализа фенолов в топливах [278—285, 120 с. 196—205] не ниже 0,01% (масс.). [c.137]

    Специфика этой задачи в том, что материал пробы ограничен малой навеской, но требуется высокая точность определения. Классический метод гравиметрического определения 8102 не подходит прежде всего из-за заметной растворимости кремниевой кислоты в водных растворах. С другой стороны, для кремния нет надежных методов объемного определения, а фотоколориметриче- ские методы и методы эмиссионного спектрального анализа, хотя и чувствительные, не обеспечивают необходимой надежности результатов анализа. Можно предположить такой путь анализа не увеличивая анализируемой навески, оса-,дить Кремний в виде малорастворимого соединения с высокой молекулярной массой. Если предварительные операции переведения ЗЮг в раствор и последующего осаждения, фильтрования, промывания и высушивания осадка обеспечивают количественное выделение стехиометрически чистого соединения кремния, общая ошибка анализа будет определяться в основном ошибками взвешивания при отборе пробы и конечном определении. Используя для осаждения и взвешивания кремния оксихинолиновую соль кремнемолибденовой кислоты, получаем соединение с молекулярной массой 2440  [c.26]

    Методам получения производных для ХМС анализа различ ных органических соединений был посвящен ряд обзоров [127—130], поиск новых производных продолжается хотя в по следние годы количество работ, посвященных этому вопросу, несколько уменьшилось В монографии Кнепа [131] рассмотре ны вопросы получения производных и их масс спектральные характеристики Два обзора Никольсона [132, 133] посвящены получению и использованию производных в количественном ГХ анализе в фармацевтической химии Вопросы выбора соответ ствующих производных в ГХ — МС анализе липидов были рас смотрены в работе [134] [c.79]

    Количественное определение следов компонентов в биологических образцах с помощью ГХ — МС — задача достаточно сложная Вероятно, для количественного определения одиночного соединения наилучшим является метод изотопного разбав ления, при этом исследователь должен иметь в своем распоря женин дейтерированные лекарственные препараты и (или) их метаболиты с достаточно высокой изотопной чистотой Следует отметить что дейтерированные анаболические препараты недоступны и, с другой стороны метод изотопного разбавления не всегда применим для анализа большого числа следовых компо иентов В этих случаях имеет смысл выбирать в качестве внут реннего стандарта соединения, характеризующиеся хорошими масс спектральными характеристиками и удобным для анализа временем удерживания В работе [84] в качестве внутреннего [c.139]

    Как правило масс спектральное количественное определе ние или исследование ЛП и их метаболитов осуществляют ме тодоь СИД Однако в тех случаях, когда для анализа распола гают достаточным количеством вещества, применяют метод цик лического сканирования полного масс спектра или его части в определенном диапазоне масс [206] [c.174]

    А. 4. А г 3 а м X о д ж а е в, Г. А. Галкин, Л. Т. Журавлев (Институт физической химии АН СССР, Москва). Представляло интерес использовать ИК-спектры для количественной оценки участия гидроксильных групп кремнезема в адсорбции воды. Многие спектральные проявления адсорбции воды и аммиака на кремнеземах определяются примесными электроноакцепторными центрами окисей алюминия (в силикагелях) и бора (в пористых стеклах) [1]. Поэтому мы применили чистые аэросилы. Концентрации гидроксильных групп на их поверхности определяли дейтерообменом с масс-спектрометрическим анализом [2]. При исследовании ИК-спектров в обычной двухлучевой системе образец нагревается глобаром до 70—80° С. В результате адсорбция воды на таком адсорбенте много меньше, чем при 20° С [3]. [c.168]

    СЛЕДОВ ОПРЕДЕЛЕНИЕ, количественное определение в анализируемом в-ве примесей (элементов, ионов, хи>т. соед., фаз и т. п.), масса к-рых не превышает 1 мкг, а массовая доля — 0,01%. Для этого применяют эмиссионный спектральный анализ, масс-спектрометрию, нейтронно-активац. анализ, атомно-абсорбц. анализ с непламенной ато-млзацией, инверсионную вольтамперометрию, люминесцентный анализ н др. Первые два метода, позволяющие определять сразу большое число элементов, используют также для общей оценки чистоты материалов. Иногда предварительно проводят относит, иля абсолютное концентрирование определяемых примесей. Все операции осуществляют в условиях, обеспечивающих низкие значения поправки холостого (контрольного) опыта. Б микрообластях анализируемого образца конц. или кол-во примесей устанавливают методами локального анализа. [c.531]

    Положительная сторона спектральных методов — йозможность их автоматизации. В этом отношении особенно перспективными являются аппараты, faк называемые квантометры, в которых спектры не фоторегистрнруют, а прямо измеряют интенсивности определенных линий при помощи фотоэлектрических приборов (фотоумножители и др.).. Автоматическое электронное устройство данные об интенсивности переводит в концентрацию, причем прибор прямо отпечатывает результаты по содержанию определяемых элементов в % (масс.). Подобные приборы количественно анализируют от нескольких до двадцати элементов в течение 5- 8 мин с точностью, которая колеблется в пределах 2—5%. Поэтому-то, несмотря на высокую стоимость, квантометры находят все более широкое применение на различных металлургических и металлообрабатывающих предприятиях. Особенное распространение они получили на больших металлургических заводах, где их используют для анализа полупродуктов и готовой продукции, главным образом, для контроля и регулирования процессов получения определенных видов сплавов с точно заданным содержанием различных легирующих составляющих. [c.373]


Смотреть страницы где упоминается термин Масс-спектральный анализ количественный: [c.132]    [c.198]    [c.607]    [c.5]    [c.216]    [c.73]    [c.42]    [c.358]    [c.294]    [c.132]    [c.152]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.75 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный

Анализ масс-спектральный

Спектральный анализ



© 2024 chem21.info Реклама на сайте