Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция получающихся при ядерных превращениях

    Для получения элементов с атомными номерами от 93 до 105 были использованы искусственные ядерные превращения. Они получили название трансурановых элементов, поскольку расположены в периодической таблице сразу же за ураном. Элементы 93 (нептуний) и 94 (плутоний) были впервые получены в 1940 г. Сначала их получили путем бомбардировки урана-238 нейтронами в результате следующих реакций  [c.253]


    В принципе сечение определяет и величину выхода реакции. В химии обычно выход реакции выражается в процентах вещества, которое принимало участие в реакции. При ядерных превращениях, однако, эта часть крайне мала например, в случае реакции, открытой Резерфордом, требуется приблизительно 50 000 а-частиц для того, чтобы из азота получить один атом кислорода Поэтому применяется эффективное поперечное сечение. [c.44]

    Процессы изотопного обмена имеют очень важное значение для решения многих химических, биологических и физических проблем. Особый интерес они представляют для радиохимии и изотопных методов исследования. Детальное изучение процессов изотопного обмена — одно из важнейших условий понимания природы химических реакций, индуцированных ядерными превращениями, разработки методов обогащения радиоактивных изотопов и разделения ядерных изомеров. Только с учетом количественных характеристик реакций изотопного обмена можно правильно определять выход продуктов ядерных реакций, а также получать правильные результаты активационного анализа и анализа методом изотопного разбавления. Процессы изотопного обмена лежат в основе установления природы химических связей, их равноценности в молекуле, а также методов получения меченых соединений. Особое значение эти процессы имеют для изучения механизма реакций. [c.10]

    Современное состояние радиохимии характеризуется бурным развитием химии процессов деления и осколочных продуктов, а также химии и технологии ядерного горючего. Широкое развитие получают исследования ядерных превращений на частицах высокой энергии (реакции глубокого расщепления), начатые Г. Сиборгом в США и успешно развиваемые А. П. Виноградовым и другими в Советском Союзе. [c.15]

    Торий, уран и плутоний находят значительное применение в виде ядерного топлива в ядерных реакторах. Плутоний получается в результате ядерных превращений урана. Выделение плутония из реактора, отделение его от урана и других образующихся в реакторе элементов представляет собой сложную совокупность химических реакций, блестяще разработанную трудами многих химиков и радиохимиков. [c.289]

    Остальные актиниды получаются с помощью различ ных ядерных превращений Причем Вк и последующие актиниды образуются в столь ничтожных количествах, что их металлические свойства практически не изучены Химические свойства ТН, Ра, и, Мр, Ри, Ат и Ст представляют собой типичные металлы с относительно высокой химической активностью На воздухе они быстро окисляются кислородом и азотом, при нагревании взаи модействуют с большинством других неметаллов, довольно легко окисляются водой и кислотами со щелочами при обычных условиях не взаимодействуют Реакции с простыми веществами [c.446]


    Как известно, з химических реакциях можно получить новые вещества, но но новые элементы. Чтобы получать элементы, недостаточно умело распоряжаться электронными оболочками атомов — нужно лезть в ядро. Для многих химических реакций требуется сложнейшее оборудование, но техника, необходимая для ядерных превращений, еще сложнее. [c.446]

    К другой разновидности радиохимического синтеза относятся методы, основанные на внедрении атомов радиоактивного изотопа в химическое соединение в процессе ядерных превращений. Радиоактивный атом, образующийся в результате ядерной реакции (например, реакции пу), получает в результате отдачи избыточную энергию, часто значительно большую, чем энергия связи в исходной молекуле в итоге такой горячий атом покидает материнскую молекулу и может внедриться в молекулу другого соединения, примешанного к облучаемому веществу. Использование реакции горячих атомов для меченого синтеза требует учета разнообразных 174 [c.174]

    Если радиоактивные изотопы в исследуемую систему не вводятся извне, а возникают в ней в результате ядерной реакции, то образующееся ядро после ядерного превращения и испускания частицы или у-кванта получает определенную энергию отдачи. Избыточная энергия, полученная ядром (и всем атомом в целом) в ре- [c.140]

    Атомы радиоактивного изотопа, образовавшиеся в результате ядерных превращений, в подавляющем большинстве случаев разрывают химические связи в материнском соединении и образуют атомы отдачи ( горячие атомы ). Часть горячих атомов вступает в химические реакции с окружающими молекулами, образуя меченые вещества, часть остается в результате охлаждения в свободном или ионном состоянии. Используя способность атомов отдачи к таким реакциям, можно отделять свободные радиоактивные атомы от исходного материнского соединения, обогащать изотопы или получать их без носителя, а также получать меченые соединения. [c.196]

    Усиленное внимание к химии циркония и гафния в послевоенные годы было вызвано тем, что для изготовления ядерных реакторов потребовался в значительных количествах чистый, свободный от гафния цирконий, слабо поглош,аюш,ий тепловые нейтроны, и металлический гафний, хорошо поглощающий тепловые нейтроны и оказавшийся очень полезным для регулировки реакций ядерных превращений. После этого открытия в течение пяти — семи лет были разработаны эффективные методы обогащения циркона, его вскрытия, разделения циркония и гафния, получения соединений и металлов высокой чистоты и уже в 1952 г. только в США получено 2,7 т металлического губчатого гафния. В последующие годы его производство значительно увеличилось в США, ФРГ, Японии, СССР и других странах. [c.3]

    Из дефекта массы, возникающего при делении такого рода, Мейтнер и Фриш по уравнению Эйнштейна Е = тс рассчитали энергетический эффект. Они получили неправдоподобно большую величину 200 МэВ на I моль атома Такую энергию еще не наблюдали ни в процессах ядерных превращений, ни тем более в химических реакциях например, 1 моль атома углерода при сгорании дает лишь 2 эВ энергии, а 1 моль атома урана при своем делении — в сто миллионов раз больше  [c.143]

    Радиоактивный азот с массовым числом 16 можно получить, обстреливая ядра 0 или дР нейтронами. Ядра еще каких элементов при этом получаются Написать уравнения ядерных реакций. Какой тип превращения наблюдается у уЫ Написать уравнение реакции. [c.55]

    Честь открытия (1934 г.) явления самопроизвольного вторичного превращения атомных ядер, образующихся в результате ядерных реакций, принадлежит супругам Кюри-Жолио (Ирен Кюри-Жолио и Фредерик Жолио-Кюри). Это явление получило название искусственной радиоактивности. Примером таких реакций может служить следующая  [c.415]

    В некоторых ядерных превращениях образуются неустойчивые продукты распада, которые в дальнейшем претерпевают самопроизвольный распад подобно актинию, урану или торию. Одну из таких реакций исследовали Ирэн и Фредерик Жолио-Кюри. Облучая атомы бора а-частицами, они получили изотоп азота который самопроизвольно распадался в течение довольно короткого времени [c.82]

    В результате распада [22, 24,25] промежуточного ядра при ядерных реакциях или при превращении одного радиоактивного элемента в другой испускается либо частица (нейтрон, протон, дейтрон и др.), либо фотон. Ядро, выбрасывающее частицу или фотон, получает импульс отдачи, эквивалентный энергии вылетающей частицы  [c.11]

    Радиоактивная мишень. Если бомбардировке ядерными частицами подвергается не стабильный, а радиоактивный изотоп, то скорость его исчезновения складывается из скорости радиоактивного распада и скорости ядерной реакции, возбуждаемой бомбардирующими частицами. В этом случае процесс описывается кинетическим уравнением, похожим на модифицированное уравнение кинетики радиоактивного распада. В большинстве практических случаев скорость ядерного превращения намного меньше скорости радиоактивного распада. Однако при облучении долгоживущих изотопов в ядерном реакторе большими потоками нейтронов эти две скорости могут достигать сравнимых величин. Ниже будет получено кинетическое уравнение применительно к облучению радиоактивной [мишени нейтронами в ядерном реакторе [3]. Оно справедливо и в случае использования других бомбардирующих частиц. [c.85]


    Если при такой бомбардировке получаются устойчивые ядра, то превращение имеет характер отдельного, изолированного акта. Примером такого превращения может служить первая в истории искусственная ядерная реакция, посредством которой при бомбардировке азота 7N а-частицами Ца) был получен один из изотопов кислорода О. Уравнение ядерной реакции имеет следующий вид  [c.67]

    По мере увеличения возможностей для осуществления ядерных реакций посредством бомбардировки ядер атомов другими ядрами расширились и перспективы синтеза атомов тяжелых трансурановых элементов. В 1940 г. первый из них появился на свет — это был нептуний, полученный в виде изотопа-239 (р-активен) при бомбардировке урана-238 потоком нейтронов. Из нептуния получается изотоп плутония-239, способный к делению. Цикл превращения плутония ведет к америцию  [c.208]

    Превращение химических элементов осуществляется в результате ядерных реакций. Первым шагом в научном решении проблемы превращения элементов было открытие А. Беккерелем в 1896 г. радиоактивности урана. Объяснение радиоактивности как следствия расщепления ядер (Э. Резерфорд, Ф. Содди, 1903) показывает, что химические элементы не являются вечными и неизменными, а могут превращаться друг в друга. С этого момента получила твердые научные основы и задача искусственного превращения элементов. Закономерности превращения ядер химических элементов изучает ядерная химия. [c.9]

    Ядерная (атомная) энергия — это часть энергии связи в ядрах атомов, высвобождающаяся прп таких превращениях сверх-тяжелых или сверхлегких элементов, в результате которых образуются изотопы средни.х элементов. Высвобождение энергии сопровождается потерей массы, эквивалентной потере высвобождающейся энергии эта энергия высвобождается в результате преобразования массы покоя в энергию. Помимо целого ряда других реакций, в реакторах прежде всего происходит взаимодействие нейтронов с ядрами атомов. Однако в реакцию с ядрами особенно легко вступают нейтроны, движущиеся с определенной скоростью, неодинаковой в различных случаях и получившей наименование резонансной. При этой скорости эффективное сечение ядра максимально. (Под эффективным [c.547]

    Наряду со стабильными изотопами химических элементов, существующими в природе, получено большое количество искусственных радиоактивных изотопов. Последние получают с помощью ядерных реакций — превращений атомных ядер в результате их взаимодействия с элементарными частицами или друг с другом. При изображении уравнений ядерных реакций соблюдаются законы сохранения массы и заряда. Это означает, что [c.100]

    Эволюция звезд и синтез элементов. Элементы неизменны — это положение сыграло важную роль в развитии современной химии. Когда речь идет о масштабах привычных явлений, происходящих в естественных условиях на Земле, и об энергетических изменениях, которые могут быть реализованы с применением традиционной техники, то можно утверждать, что атомы остаются неизменными если же говорить о температурах, значительно превышающих обычную (более 10 К), то изменения затрагивают также и ядра атомов, а следовательно, изменяются и элементы. Взаимное превращение ядер было обнаружено в конце XIX в. и получило название естественной радиоактивности. В наше время применение ядерных реакторов, циклотронов и других ускорителей электрически заряженных частиц также сопровождается превращением атомных ядер, хотя и в небольшом масштабе. Необычайно яркий свет, испускаемый регулярными звездами, обусловлен взаимодействием атомов активность звезд также неразрывно связана с ядерными реакциями. [c.18]

    Деление атомных ядер и ядерный синтез. Ядерная энергетика. За рубежом в 1939 г. было показано, что уран, облученный нейтронами, испытывает необычное превращение делится на два осколка с атомной массой, примерно вдвое меньней, чем у урана. Одновременно наблюдается образование нескольких нейтронов. Этот новый тип ядерных превращений получил название деления. В этом же году советские ученые Петржак и Флеров доказали, что деление урана осуществляется не только при облучении нейтронами, но и самопроизвольно. Таким образом, для урана распад может идти одновременно по двум схемам, по типу а-распада и по типу деления. Последний процесс характеризуется большим периодом полураспада (10 лет) и поэтому в природном уране он осуществляется очень редко. Положение здесь аналогично химическим экзотермическим реакциям, которые могут протекать самопроизвольно, но с измеримой скоростью протекают лишь тогда, когда система получает необходимую энергию активации, позволяющую реагирующим частицам преодолеть потенциальный барьер. Для осуществления деления требуется также активация, например, за счет поглощения тяжелым ядром нейтрона. [c.419]

    Особенно сильно возросла роль химии в современной технике, оперирующей энергиями огромной мощности, большая часть которых получается за счет энергии химических реакций окисления топлив или за счет энергии ядерных превращений. Современная техника характеризуется высокой энергонапряженностью, в связи с чем основной задачей конструкторов и технологов становится снижение массы машины, приходящейся на единицу получаемой или потребляемой мощности (кг/кВт). Для решения этой задачи необходим очень широкий ассортимент конструкционных материалов, обладающих достаточной удельной прочностью.  [c.5]

    Особенно сильно возросла роль химии в современной технике, оперирующей энергиями огромной мощности, ббльшая часть которых получается за счет энергии химических реакций окисления топлив или за счет энергии ядерных превращений. Современная техника характеризуется высокой энергонапряженностью, в связи с чем основной задачей конструкторов и технологов становится снижение [c.5]

    Радиоактивность (от лат. radio — излучаю и a tivus — деятельный) —самопроизвольное превращение неустойчивых (нестабильных) изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц или ядер (напр., гелия). Существует а-распад, -распад, которые часто сопровождаются испусканием у-лучей, спонтанное деление и др. Скорость радиоактивного распада характеризуется периодо.м,полураспада (Т" / ). Наиболее распространенной единицей измерения Р. является кюри. Р. используется в науке, технике и медицине. См. Радиоактивные изотопы, Радиоактивные элементы. Радиоактивные изотопы — неустойчивые, самопроизвольно распадающиеся изотопы химических элементов. При радиоактивном распаде происходит превращение атомов Р. и. в атомы одного или нескольких других элементов. Известны Р. и. всех химических элементов. В природе существует около 50 естественных Р. и. с помощью ядерных реакций получено около 1500 искусственных Р, и. Активность Р. и. определяется числом радиоактивных распадов в данной порции Р. и. в единицу времени (единица активности — кюри). Р. и. характеризуются периодом полураспада (время, в течение которого активность убывает вдвое), типом и энергией (жесткостью) излучения. Р. и. широко используются в науке и технике как радиоактивные индикаторы и как источники излучений. В технике применяются только некоторые из искусственных Р. и.— наиболее дешевые, достаточно долговечные с легко регистрируемым излучением. Наиболее важные области применения — радиационная химия, изучение механизма различных химических процессов, в том числе в доменных и мартеновских печах, износа деталей машин, режущего инструмента, процессов диффузии и самодиффузии и др. В у-дефектоскопии используются Р. и. с у-излученнем для просвечивания изделий и материалов, для выявления внутренних дефектов. [c.110]

    Вопрос о происхождении элементов с самого начала возникновения и на протяжении всей истории его развития всегда тесно и неразрывно связывался с вопросом о превращении элел1ентов. И действительно, только после осуществления ядерных реакций, получения огромного количества искусственных радиоактивных изотопов и 15 новых элементов, не найденных на Земле, решение проблемы происхождения химических элементов получило твердые рхаучные основы. Осуществление ядерных превращений в широких масштабах позволило найти некоторые способы синтеза химических элементов. Начались поиски космических объектов, в которых могли протекать подобные превращения. Долгое время усилия исследователей были безуспешны, и тогда [c.3]

    Ядерные реакции могут протекать как с медленными, так и с быстрыми нейтронами. С медленными нейтронами осуществляется реакция п, у с образованием изотопа исходного элемента мишени. При этом отделение образовавшегося радиоактивного изотопа от материнской мишени можно осуществить только в том случае, если можно воспользоваться эффектом отдачи, т. е. использовать для облучения сложные соединения типа солей кислородных кислот, комплексных или внутрикомплексных соединений, органич е-ских соединений, в которых радиоактивный изотоп после ядерной реакции находится в иной химической форме, чем исходный элемент в мишени. Отделение возможно и в том случае, если материнский и дочерний изотопы находятся после ядерного превращения в разных фазах.. Например, материнский изотоп взят в виде суспензии, а дочерний оказывается в растворе или материнский осажден на ионите в виде комплекса, а дочерний появится в ионном состоянии и легко смывается с колонки. С некоторыми легкими ядрами медленные нейтроны реагируют по п, р- и п, а-реакциям с образованием элементов с меньшим порядковым номером, чем у элемента мишени, например из лития получается тритий по реакции Ы(п, а) Н. Кроме того, по п, у-реакции может идти образование изотопа элемента с порядковым номером на единицу большим, чем у исходного элемента мишени, путем захвата нейтрона с последующим распадом получившегося радиоактивного изотопа. [c.233]

    Значение нейтронов в радиохимии. Высокая эффективтюсть нейтронов в преобразовании элементов была обнаружена [42] вскоре после их открытия Чэдвиком в 1932 г. [30] относительно истории этого открытия см. [43]. В конце концов почти всякий нейтрон погибает, обязательно вызывая превращение ядра, даже если он потеряет почти всю свою кинетическую энергию, прежде чем это произойдет ( медленные нейтроны [6]). Однако сами свободные нейтроны приходится получать (исключая котел с цепной реакцией) с помощью ядерных превращений, вызываемых заряженными частицами, с относительно малыми выходами. Поэтому на первый взгляд можно было бы ожидать, что количество радиоэлементов, получаемых при непосредственной бомбардировке заряженными частицами (от естественных радиоактивных источников или ускорительных установок), будет не меньше, чем получаемое с помощью нейтронов от источников с естественными радиоэлементами или нейтронов, испускаемых мишенями ускорителей. В действительности, однако, выходы в таком двухстепенном процессе сильно увеличиваются. Причина заключается в том, что на первой стадии процесса можно выбрать для мишени такой материал, который в силу низкого потенциального барьера и подходящего протон-нейтронного отношения обладает хорошим нейтронным выходом на второй стадии незаряженные нейтроны легко реагируют даже с очень сильно заряженными ядрами, в то время как непосредственное проникновение первичных заряженных частиц в такие ядра потребовало бы чрезмерных энергий. Однако преимущество хорошего выхода приобретается пе даром. Для медленных нейтронов, как правило, преобладает реакция (п, у), приводящая к образованию изотопов из вещества мишени, которые нельзя химически отделить (см., однако, гл. IX) быстрые нейтроны, которые часто приводят к неизотопным продуктам, дают меньшие [c.39]

    Современный этан Р. х. начался лишь два десятилетия назад в связи с работами по использованию атомной энергии. Существенное значение приобрело изучение действия разных видов излучения на различные материалы, применяемые в атомной энергетике. Эксплуатация ядерных реакторов и нерерабо ядерного горючего потребовали выяснения процессов разложения воды, химич. превращений в технологич. смесях, обладающих высокой радиоактивностью. В ходе решения этих прикладных вопросов был накоплен обширный экспериментальный материал и сделаны значительные научные открытия, паир. был выяснен радикальный механизм радиолиза воды. Одновременно широко развернулись исследования Л1ехани. ма биологич. действия ионизирующих излучений. Существенная термодинамич. неравновесность, присущая радиационно-химич. процессам, исследование временных зависимостей их протекания превращают современную теоретич. Р. х, в своеобразный раздел кинетики элементарных химич. процессов. Р. х. позволила определить абсолютные величины констант скоростей ряда элементарных реакций, получить сведения о природе и свойствах многих свободных радикалов. [c.210]

    Химия отдельных радиоэлементов также имеет своей особенностью идентификацию изотопов по радиоактивности. Поэтому эта область Р. касается изучения только элементов, не имеющих стабильных и долгоживущих изотопов, во всяком случае, на данном этапе исследования. К элементам, изучавшимся методами Р., относятся, нанр., астатин, технеций, полоний, франций, радий, актиний, протактиний, трансурановые элементы. После того, как нек-рые из этих элементов были получены в весовых количествах, стало возможным их изучение и нерадиохимич. методами. Химия процессов, сопровождающих радиоактивные превращения, ставит перед собой след, задачи 1) изучение продуктов различных ядерных превращений и ядерных реакций 2) изучение химич. изменений, вызываемых ядерными реакциями и радиоактивными превращениями 3) определение форм стабилизации изотопов, возникающих при ядерных реакциях и превращениях. Эти задачи являются специфическими для Р. и решаются лишь путем наблюдения за радиоактивностью продуктов превращений. [c.246]

    Поэтому полимеризацию цетана исследовали при низких степенях превращения путем облучения его в течение всего нескольких минут в специальных контейнерах, которые можно было пропускать через ядерный реактор. Достигавшиеся степени превращения оказались настолько низкими, что получался лишь один продукт. Анализом этого продукта масс-спектральным методом под низким напряжением обнаружен пик для массы 224 эта масса соответствует цетену, и, следовательно, основной реакцией, протекающей в этих условиях, является дегидрирование. Исследовали влияние продолжительности облучения цетана в реакторе на образование этого продукта, предположительно представляющего собой цетен. Одновременно были проведены также химические анализы, показавшие, что образующийся продукт является алкеном. Более того, увеличение количества продукта с ростом продолжительности облучения, контролировавшееся химическими методами анализа, сопровождалось увеличением интенсивности пика массы 224 при масс-спектральном анализе. Эти данные дополнительно подтверждают, что при низких степенях превращения преобладает реакция дегидрирования. [c.152]

    Для синтеза карбеновых прекурсоров, бмс-1,2,4-триазолов 9а, Ь, разработан новый способ, который заключается в рециклизации мостиковых бмс-1,3,4-окса-диазолов 11а, b под действием ароматических аминов. Ранее рециклизации 1,3,4-оксадиазолов под действием аминов и гидразинов были описаны только для моно-ядерных 3,5-дизамещенных систем [32, 33]. Превращение бмс-ядерных 2-незамещенных оксадиазолов в 3,3 -незамещенные бмс-1,2,4-триазолы проведена нами впервые. Процесс протекает эффективно при нагревании смеси бисоксадиазолов 11а, b с аминами при температуре 200°С, но приводит к обильному образованию окрашенных примесей. Кроме того, некоторые амины подвергаются при температуре реакции возгонке. Для уменьшения этих нежелательных процессов нами применен катализ трифторуксусиой кислотой в о-дихлорбензоле. В этих условиях получены хорошие выходы бистриазолов 9а, b (95 и 55% соответственно). [c.285]

    Также и в этом случае можно получить только красно-коричневый смолистый продукт. Отсутствие полос КН в инфракрасном спектре снова указывает на превращение вводимого в реакцию диметилгидразинхлорида. Анализ спектра Н ядерного магнитного резонанса показал, что в данном случае мог быть получен вышеназванный продукт в сильно загр язненном виде, что не позволило его идентифицировать. [c.111]

    Ф. X. последних десятилетий характеризуется след, чертами. В результате развития квантовой химии мн. проблемы хим. строения в-в и механизма р-ций решаются на основании теор. расчетов. Наряду с этим широко используются физ. методы исследования — рентгеноструктурный авализ, дифракция электронов, спектроскопия в видимой, УФ и ИК областях, ЯМР, ЭПР, ядерный гамма-резонанс (эффект Мессбауэра), методы, основанные на примен. стабильных и радиоа . изотопов, и др. Приложение Ф. х. к исследованию превращений орг. в-в привело к выделению новой отрасли знания — физической орг. химии, центральной задачей к-рой является выяснение связи между строением в-в и их реакц. способностью. Ф. х. получает все возрастающее значение для биологии и медицины, она является теор. основой хим. технологии. [c.621]

    Экзотермический процесс превращения водорода в гелий идет на Солнце чрезвычайно медленно, т. е. в литре, за 1 сек образуется ничтожное количество продукта ядерной реакции Споэтому Солнце не взрывается, и водорода на нем хватит еще на биллионы лет). В суммарном же выражении (на весь объем Солнца) синтез гелия происходит, однако, с большой скоростью, и в итоге получается потрясающий наше воображение суммарный тепловой эффект, который и определяет стационарное лучеиспускание солнечной энергии (подробнее об этом процессе будет сказано в одной из последующих лекций). [c.138]

    ГАММА-ЛУЧИ ( -лучв ) — электромагнитное излучение с очень коротким11 длинами волн (от 1 Л и меньше), испускаемое атомными ядрами в результате естественных и искусственных превращений или возникающее вследствие торможения заряженных частиц, аннигиляции пар частиц (напр., электронцо-позитрон-ной пары) и т. д. Г.-л. проявляют себя не только как электромагнитные волны, но также и как поток частиц (т. н. у-квантов), причем волновые свойства (дифракция, интерференция) проявляются лишь у самых длинноволновых Г.-л., корпускулярные же свойства их выражены более отчетливо (фотоэффект, компто-новское рассеяние). Энергия Г.-л. (у-квантов) выражается как hv, где к— постоянная Планка, а V — частота электромагнитной волны. Естественные радиоактивные источники испускают Г.-п. с энергией до нескольких Мэе в ядерных реакциях можио получить Г.-л. с большей энергией. Г.-л. с порядка сотен Мэе и даже ок. 1 Бее получаются при торможении электронов на ускорителях заряженных частиц. [c.402]

    Большая интенсивность иейтрояного потока в урановом реакторе позволяет получать трансурановые элементы путем последовательного захвата ядром нескольких (до 15) нейтронов. Возможная цепь ядерных реакций и превращений, приводящая к образованию 99-го и 100-го элемента, выглядит, например, так  [c.221]


Смотреть страницы где упоминается термин Реакция получающихся при ядерных превращениях: [c.60]    [c.152]    [c.165]    [c.5]    [c.5]    [c.165]    [c.621]    [c.111]    [c.17]    [c.146]   
Химическая кинетика и катализ 1985 (1985) -- [ c.349 , c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции ядерные



© 2025 chem21.info Реклама на сайте