Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран, определение в органических веществах

    В качественном анализе наиболее часто для определения неорганических и органических веществ используют собственную люминесценцию. Из неорганических соединений в растворенном состоянии люминесцируют в ультрафиолетовом свете соли лантаноидов, соли уранила, соли тяжелых металлов ТР, В1 и др. [c.149]


    Определению мешают бихромат, молибдат, перйодат, перманганат, тиосульфат, вольфрамат, ванадат, трехвалентные золото и железо, хлороплатинат, хлорат и сульфит. Анализируемый раствор также должен быть относительно свободен от органического вещества, которое может поглощать в ультрафиолетовой области. Ионы йодида, двухвалентной меди, уранила, цианида и двухвалентного железа допустимы в концентрации до 20 мг л. Максимально допусти- [c.133]

    Обработка фильтрата. Фильтрат, полученный после осаждения по п. а , может быть сразу применен для определения кальция и магния. Фильтрат, полеченный после обработки по п. б , может содержать некоторые металлы, которые должны быть предварительно выделены. Для этого нужно сначала разрушить тартраты. Раствор выпаривают в большой платиновой чашке с 10—12 мл серной кислоты и осторожно нагревают до тех пор, пока не начнется ясное обугливание. Слегка -охлаждают, покрывают часовым стеклом и осторожно приливают 5 мл азотной кислоты (лучше дымящей) когда бурная реакция прекратится, постепенно нагревают до гех пор, пока органические вещества полностью не окислятся обработку азотной кислотой, если нужно, повторяют Чашку охлаждают, растворяют остаток в воде и прибавляют раствор аммиака, чтобы осадить алюминий, титан, цирконий, бериллий, ниобий, тантал и уран, а также фосфор и ванадий, если количество этих двух элементов не превышает того, которое может соединиться с основаниями в виде фосфатов и ванадатов. В присутствии алюминия избытка аммиака надо избегать. Если фосфор и ванадий присутствуют в количестве большем, чем то, какое может быть связано алюминием, титаном и др., то в осадке можно ожидать присутствия щелочноземельных металлов. После растворения осадка в горячей разбавленной (1 1) соляной кислоте дальнейшее разделение идет обычным путем. [c.92]

    При осаждении купфероном уран следует предварительно восстановить до четырехвалентного. Концентрация кислоты в растворе при этом должна быть несколько ниже, чем в описанном выше случае . Если для определения урана используется фильтрат, полученный после отделения некоторых элементов купфероном по предыдущему методу, прозрачный раствор выпаривают приблизительно до 50 мл, прибавляют 20 мл азотной кислоты и продолжают выпаривание до появления паров серной кислоты. Если при этом органические вещества полностью не разрушаются, снова прибавляют азотную кислоту, тщательно обмывают стенки сосуда водой и повторяют выпаривание для удаления азотной кислоты. После охлаждения раствор разбавляют водой с таким расчетом, чтобы в 100 мл содержалось б лгл серной кислоты, снова охлаждают и пропускают его через редуктор Джонса (стр. 125). Редуктор промывают 8%-пой серной кислотой. Охлаждают раствор до 5—10 и прибавляют холодный 6%-ный раствор купферона (в небольшом избытке). После этого вводят мацерированную бумагу и дают раствору отстояться. Осадок отфильтровывают, промывают холодной 4%-ной серной кислотой, содержащей 1,5 г/л купферона, и затем осторожно прокаливают сначала, как описано выше, а под конец при 1000—1050°. По охлаждении взвешивают Б виде U Og. Состав окисла не совсем точно отвечает этой формуле, что указано в гл. Уран (стр. 482). [c.135]


    Ход определения. В разбавленный сернокислый раствор, содержащий не более 1 % сульфата уранила и свободный от двуокиси углерода, органических веществ и элементов, осаждающихся аммиаком или образующих в аммиачной среде соединения с ураном, вводят несколько капель раствора метилового красного и нагревают до кипения. Затем прибавляют разбавленный раствор аммиака, пока окраска индикатора не станет отчетливо желтой, вводят мацерированную бумагу в количестве, соответствующем половине 9-сантиметрового фильтра, и перемешивают. Осадок отфильтровывают и промывают горячим 2%-ным раствором нитрата аммония . Высушивают в платиновом тигле, прокаливают в хороших окислительных условиях, сначала при возможно более низкой температуре до сгорания углерода, а затем, поместив тигель в наклонном положении, прокаливают на полном пламени горелки Теклу (1000°). Под конец тигель закрывают и прокаливают еще 1 мин. Прокаленный остаток охлаждают в эксикаторе и взвешивают в виде изОв. [c.482]

    Купферон (аммонийная соль Л -нитрозо-7У-фенилгидроксила-мина) из сильнокислых растворов осаждает уран (IV). Щелочные и щелочноземельные металлы, А), 2п, Сг, Ве, Мп, и некоторые другие элементы, а также фосфаты, бораты, фторобораты и органические комплексообразующие вещества (оксалаты, тартраты, цитраты) при этом остаются в растворе. Так как уран (VI) из сильнокислых растворов не осаждается купфероном, предварительно его восстанавливают до урана (IV) с помощью подходящего восстановителя (гидроксиламин, гидросульфит натрия и др.). Методика осаждения приводится в разделе Весовые методы определения . [c.274]

    Из предварительно восстановленных растворов уран (IV) количественно может быть отделен от умеренных количеств других элементов осаждением щавелевой кислотой. Исключением являются только торий и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с ураном (IV). Полноте осаждения урана (IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества (молочная кислота и т. п.). После отделения осадка содержание урана в нем определяют весовым или другим удобным методом. Методика осаждения подробно описана в разделе Весовые методы определения . [c.277]

    Иногда анализируемое вещество растворяется непосредственно в органическом растворителе. Примеси из него можно в этом случае выделить реэкстракцией . Так, для определения в уране редкоземельных элемен- [c.136]

    При определении органических веществ в качестве титранта наиболее широко используют галогены, в частности бром. Рассмотрена возможность определения электрогенерированным хлором фталевой и ненасыщенных жирных кислот, метилтио-уранила, гидразида изоникотиновой кислоты, фенола, крезола, пирокатехина, резорцинола, гидрохинона, некоторых циклических р-дикетонов, кофеина и теобромина и др. [294]. Кулонометрическое титрование электрогенерированным бромом предложено также для аминов и енольных эфиров различной структуры, дифенацена и др. Титрование проводят в 50 %-ном водном растворе уксусной кислоты, 0,2 М по бромиду калия [659, 660]. Этот же титрант предложен для экспрессного опре-деления аминного азота после разложения органических соединений сплавлением с гидросульфатом калия [661]. При определении органических веществ электрогенерированным бромом [c.81]

    Значительная роль органического вещества в переносе и концентрировании урана отмечалась еще В. И. Вернадским [974]. В определенной степени это относится и к нефти. На связь урана с органическими компонентами сырой нефти указывает обратная зависимость между зольностью нефти и содержанием урана [975]. Отмечают, что уран связан в основном с асфальтосмолистыми компонентами нефти. Из нефтей и мальт с повышенным содержанием урана удалось выделить асфальтены, сильно обогащенные ураном [976]. На тесную связь урана с асфальтосмолистыми компонентами косвенно указывает обогащенность ураном асфальтов и нефтей, экстрагированных из асфальтсодержащих пород, по сравнению с сырыми нефтями [977]. Отмечается также связь между степенью окисленности нефтей и содержанием в них урана [978, 979]. Возможно, что это парагенетическая связь, т. е. параллельное накопление урана в нефти за счет захвата его из пластовых вод асфальтосмолистыми компонентами и окисление нефтей при контакте с пластовыми водами. [c.180]

    Определение урана с помощью торона. Торон (бензол-2-арсо-новая кпслота-< 1-азо-1 >-2-оксинафталин-3,6-дисульфокислота) предложен В. И. Кузнецовым. В солянокислой среде реагент дает чувствительную реакцию с ураном, находящимся в четырехвалентном состоянии. А. В. Николаев и А. А. Сорокина [184] для определения урана восстанавливали его до урана (IV) иодидами. Выделившийся в результате восстановления иод удаляли из раствора продуванием азотом. Удобным для колориметрирования интервалом является Ы0 —2-10 г/л1Л. Нижний предел определения — 10 г урана в 1 мл. Не мешают уран (VI) при отношении к 11 (IV) до 1000 1, ванадий (III) до 16 1, Сг (III) до 6 1, Ре (III) до 200 1, Т11Д0 1000 1. Влияние А1, Ре (II), 2п, Се (III), Та (III), Ве, Са ничтожно. Мешают и должны быть полностью удалены N0/, Р , фосфаты, оксалаты и органические вещества. [c.138]


    Милнер и Нанн [751 ] при определении урана в тройных сплавах на основе висмута (U—Tli—Bi—сплавы) использовали ионнообменный метод отделения, сорбируя уран вместе с висмутом из 5/И раствора НС1 на анионите деацидит FF в солянокислой форме. После вымывания урана с колонки 0,2 М раствором НС1 его восстанавливают до урана (IV) и титруют сульфатом церия (IV) или же определяют полярографически на фоне тартрата. Метод дает вполне удовлетворительные результаты, но несколько длителен из-за необходимости удалять органические вещества, извлекаемые из анионита. Аналогичный метод использовал Милнер при определении U в бинарном сплаве с Bi [746, 749]. [c.354]

    Метод отличается исключительно высокой чувствительностью— порядка 10- —10 7 моль/л и чаще всего используется для определения низких концентраций ионов металлов, связанных в форме, подходящих флуоресцирующих комплексов, а также для определения некоторых органически веществ типа рибофлавина, витаминов группы В, алкалоидов и др. Так, комплексы 8-оксихинолина с рядом таких ионов металлов, как А1 , Оа +, Мд +, используются для ояределения этих ионов при концентрациях, достигающих 0,01 мкг/мл. Алюминий определяется при помощи флуоресцентных методов с 8-оксихинолином, морином или понтахромом сине-черным Р при содержании от Ы0- до 1% в различных сплавах и минералах. Флуоресцентный метод можно использовать не только для анализа растворов, но и для анализа веществ в твердой фазе. Так, уран в абсолютных количествах порядка Г-10- г можно определить при помощи-сплавления исследуемого вещества с бо-раксом или фторидом натрия до маленьких бусинок, облучения бусинок ультрафиолетовым светом и измерения вторичной эмиссии в видимой области спектра. .  [c.399]

    Объемному определению каждого из элементов после восстановления в редукторе, само собой разумеется, мешают все прочие восстанавливающиеся наряду с ним элементы, а именно железо, титан, европий, хром, молибден, ванадий, уран, ниобий, вольфрам и рений. Помимо того, следует упомянуть азотную кислоту, органические вещества, олово, мышьяк, сурьму и политионаты. Наиболее часто приходится сталкиваться с азотной кислотой, которая восстанавливается до гидроксил-амина и других соединений, на которые при титровании расходуется окислитель. Например, при определении железа в белой глине можно получить неверные результаты вследствие содержания нитрата аммония в осадке от аммиака, даже тщательно промытом. Для полного удаления азотной кислоты обычно требуется двукратное, даже лучше трехкратное, выпаривание раствора с серной кислотой до появления ее паров, причем стенки сосуда необходимо каждый аз тщательно обмывать. Иногда, как, например, в присутствии урана или при разрушении фильтровальной бумаги обработкой азотной и серной кислотами, азотная кислота удерживается настолько прочно, что для ее удаления двукратного выпаривания с серной кислотой недрстаточно. При разрушении фильтровальной бумаги можно избежать введения азотной кислоты, для чего к раствору, выпаренному в закрытом стакане до появления паров серной кислоты, прибавляют осторожно по каплям насыщенный раствор перманганата калия до появления неисчезающей розовой окраски, а затем продолжают нагревание в течение нескольких минут. [c.138]

    Крс невая кислота увлекается в осадок, фосфаты оеаждадатея в виде фосфата уранила. Исключение влияния этих веществ предусматривается в ходе определения. Мешают определению также некоторые органические вещества. При значительном содержании органических веществ проводят предварительную обработку пробы, как описано в разд. 6.1.1, [c.135]

    Распределительная хроматография имеет большое значение для выделения из смесей чистых образцов неорганических веществ. Для этого водный раствор, содержащий соли разделяемых металлов, подают в,верхнюю часть колонки с целлюлозной пульпой, насыщенной подходящим органическим растворителем. Затем пропусканием потока органического растворителя ионы металлов вымываются в нижнюю часть колонки. Ионы металлов распределяются между водной и органической фазами. Часто для улучшения распределения в органическую фазу добавляют комплексообразующие реагенты, например 8-оксихинолин. В результате этого различные металлы будут концентрироваться в разных фракциях органической фазы (элюатах), отбираемых из нижней части колонки. Иногда соль металла очень хорошо растворима в определенном органическом растворителе, что используют для отделения этого металла. Так, уран можно количественно выделить из разнообразных минералов этиловым эфиром, содержащим азотную кислоту в качестве растворителя, с использованием целлюлозной колонки. При помощи этого же растворителя можно разделить цирконий и гафний, химические свойства которых во многом близки. [c.349]

    Определение алифатических кислот и спиртов в водных растворах. Как известно, оптические спектры соединений урана чувствительны к изменению окружающей среды [6]. Папример, присутствие в растворе органических кислот или спиртов приводит к тушению люминесценции уранил-иона. Эффект ярче выражен при взаимодействии органических веществ с сернокислым урани-лом, имеющим более высокий выход свечения. [c.189]

    В неводной среде уран может быть определен с 2-п и р и д и н-<1-азо - 1>-2-нафтолом [419, 540]. В водных растворах реагент дает с ураном ярко-красный осадок, переходящий в органический слой при взбалтывании с о-дихлорбензоломили с хлороформом. Осаждение проводят из аммиачных растворов, содержащих комплексон III и цианиды для маскирования прочих элементов. Маскирующие уран вещества (фосфаты, HgOg и другие) мешают. Чувствительность—2—10 мкг урана в 10 мл органического растворителя. [c.54]

    Наиболее простым и удобным для автоматического анализа растворов урана является его прямое определение без предварительного отделения от других элементов. Однако, поскольку в реальных растворах присутствует большое количество других элементов, обычно требуется предварительное отделение. Экстракционные методы отделения урана от мешающих примесей легче других могут быть автоматизированы, а применение высокоэффективных экстрагентов, таких как трибутилфосфат, диизоамиловый эфир метилфосфоповой кислоты и т. д., извлекающих уран из нитратных растворов с очень высокими коэффициентами распределения, позволяет отделять его от больших количеств других элементов. Проведение экстракции урана в присутствии комплексообразующих веществ, например комплексона 111, удерживающего многие элементы в водном растворе и не препятствующего извлечению урана, позволяет значительно повысить избирательность отделения. Если последующую реэкстракцию урана из органической фазы проводить раствором реагента, удобного для фотометрического определения урана, то таким образом само определение сводится к простой операции измерения оптической плотности полученного реэкстракта. [c.281]

    Но, судя даже по вышесказанному, не всякие, даже физические, а тем более химические, свойства однородных веществ, особенно твердых и жидких, определяются одним весом их частиц, и многие находятся в определенной (гл. 15) зависимости от природы и веса атомов входящих элементов и определяются их индивидуальными особенностями. Так, плотность в твердом и жидком состоянии (как далее будет показано) определяется преимущественно весами атомов входящих простых тел, так как тяжелые простые и сложные тела встречаются только между веществами, содержащими элементы с большим атомным весом, каковы золото, платина, уран. И в свободном состоянии эти простые тела суть тяжелейшие между всеми. Вещества, заключающие столь легкие элементы, как Н, С, О, N (таковы многие органические), никогда не имеют большого удельного веса в большинстве случаев он разве немногим превышает уд. вес воды. При возрастании количества водорода, как легчайшего элемента, плотность обыкновенно уменьшается и часто получаются вещества более легкие, чем вода, но все отношения, здесь встречающиеся, сложнее, чем, напр., для плотности паров. Светопреломляющая способность веществ также вполне зависит от содержания и свойств элементов [220]. История представляет тому явное доказательство, потому что — по высокому показателю преломления алмаза — Ньютон предугадал, что в нем содержится горючее углеродистое вещество, так как многие горючие углеродистые масла имеют большой показатель преломления. Мы увидим впоследствии (гл. 15), что многие из таких свойств веществ, которые находятся в прямой зависимости не от веса частицы, а от ее состава, или, говоря иначе, от свойств и количества входящих в нее элементов, стоят в особой (периодической) зависимости от атомных весов элементов, т.-е. масса (частиц и атомов), пропорциональная весу, определяет свойства веществ, как она определяет (вместе с рас-Ьтоянием) движение небесных светил. Масса (вес) частицы определяет, как указано выше, многие физические и химические свойства веществ, начиная с плотности их паров и [c.246]

    Экстракция с помощью ТТА нашла применение и для определения америция-243 путем выделения и последующего измерения активности дочернего вещества нептуния-239 [308]. Описана даже полная схема переработки ядерного горючего с помощью ТТА [309]. В этом процессе происходит вначале отделение плутония (IV) от урана и продуктов деления (за исключением циркония) экстракцией раствором ТТА в бензоле. Индикаторные количества продуктов деления, попавщие в органический раствор, вымываются раствором НЫОз. Затем плутоний селективно реэкстрагируется разбавленным раствором НМОз, в который для восстановления плутония (IV) до неэкстрагируемой формы плутония (III) вводится восстановитель. После экстракции плутония из водного раствора извлекается уран раствором ТТА в гексоне. [c.154]

    Теноилтрифторацетон пригоден для разделения урана и плутония и очистки их от осколочных радиоактивных элементов. В этом случае из сильно кислых растворов сначала экстрагируются четырехвалентный плутоний и цирконий, а затем ничтожные количества других веществ вымываются из органического слоя азотной кислотой. Плутоний (Рп ) отделяется от циркония восстановлением до Рп и реэкстракцией из органического слоя водным раствором азотной кислоты. Уран после удаления плутония экстрагируется раствором теноилтрифторацв тона в гексане. Недавно описан быстрый количественный метод выделения плутония из смесей с другими элементами, также основанный на экстракции плутония раствором теноилтрифторацетона в ксилоле. Метод может быть контрольным при определении полноты отделения плутония. Этот же экстракционный раствор используется для выделения из кислых растворов нептуния-237 и микроколичеств нептуния-239. Все эти примеры свидетельствуют о важном значении фторированных р-дикетонов в современной радиохимии и атомной промышленности. [c.92]

    К флуоресценции в видимой области способны в основном два класса веществ 1) большое число минералов и неорганические твердые люминофоры и 2) органические и металлоорганические соединения, обладающие интенсивным поглощением в УФ-области. Что касается веществ первого класса, мы упомянем лишь метод определения следов урана в горных породах и природных водах [10]. К растворенной пробе добавляют Са(ЫОз)г и затем (медленно) ЫН4р. Образующийся при этом осадок СаРг захватывает уран в виде фторида. Осадок отфильтровывают, высушивают, прокаливают при 800 °С, затем измельчают. Получившуюся пудру спрессовывают в таблетки и исследуют на флуориметре. Как показано в цитируемой работе, возбуждение проводилось аргоновым ионным лазером при длине волны 488 нм. По данным авторов, предел обнаружения составляет 0,01 пг/мл. [c.159]

    В опытах по изучению фотолиза особую роль играет явление сенсибилизации, будь то опыты в лабораторных или полевых уело ВИЯХ, однако наши знания о сенсибилизации фотохимического раз ложения гербицидов весьма ограниченны. Уже давно известно что многие вещества, в том числе синтетические и природные кра сители, окись цинка, соли уранила и трехвалентного железа комплексные соединения кобальта и металлический иод, могут дей ствовать как эффективные катализаторы на определенные фото химические процессы. При проведении опытов в лабораторных ус ловиях в любых образцах дистиллированной воды, на стекле и на фильтровальной бумаге присутствуют в некоторой концентрации соли металлов. Окиси металлов содержатся в стекле и, разумеется, в адсорбентах, применяемых для хроматографии. Даже спектрально чистые органические растворители содержат флуоресцирующие примеси, которые являются потенциальными сенсибилизаторами [99]. В полевых условиях почва, вода и поверхность растений богаты солями, окислами, флуоресцирующими красителями и большим количеством других веществ, которые могут активировать или ингибировать процессы фотохимического разложения. [c.352]


Смотреть страницы где упоминается термин Уран, определение в органических веществах: [c.112]    [c.27]    [c.137]    [c.137]   
Колориметрическое определение следов металлов (1949) -- [ c.492 ]




ПОИСК





Смотрите так же термины и статьи:

Уранил определение



© 2025 chem21.info Реклама на сайте