Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мору окисления-восстановления

    Наиболее распространенные титриметрические методы определения серебра основаны на реакциях осаждения, комплексообра-зования и реакциях окисления-восстановления. В методах титрования по реакциям осаждения в качестве титрантов используют растворы галогенидов, роданидов или цианидов щелочных металлов. Титрование можно вести как без индикатора (метод Гей-Люссака) [16671, так и в присутствии индикаторов — хромата калия (метод Мора) или железоаммонийных квасцов (метод Фоль-гарда). Последний метод получил наибольшее распространение. [c.77]


    Таким образом, для осуществления амперометрического титрования необходимо установить на индикаторном электроде потенциал, отвечающий области диффузионного тока того вещества, которое участвует в электродном процессе и концентрация которого изменяется в процессе титрования. Для этой цели часто применяются реакции осаждения (например, титрование цинка ферроцианидом калия), реакции окисления — восстановления (например, титрование ванадата солью Мора) и реакции комплексо-образования (например, титрование при помощи различных комплексонов). [c.15]

    Определение ванадия — элемента с переменной валентностью— основано на реакциях окисления — восстановления, причем наиболее распространенным является метод амперометрического титрования ванадия (V) солью Мора (двухвалентным железом) по току окисления последнего на платиновом вращающемся электроде. [c.180]

    К полученному тем или иным способом сернокислому раствору прибавляют на холоду небольшой избыток 0,01 н. раствора соли Мора для восстановления ванадия (V) и хрома (VI), если он присутствует в пробе, затем добавляют 1 мл фосфорной кислоты, которая образует с ионом железа (III) бесцветное комплексное соединение. К холодному раствору по каплям прибавляют 0,01 н. раствор перманганата калия до появления розовой окраски, не исчезающей в течение 2—3 мин. Если розовая окраска появляется после прибавления 1—2 капель перманганата, то это свидетельствует о том, что соль Мора вначале была добавлена в недостаточном количестве. В таком случае добавляют еще некоторое количество раствора соли Мора и снова окисляют избыток железа (И) и ванадий (IV) перманганатом калия. Не следует прибавлять слишком много перманганата калия, так как может происходить частичное окисление хрома (III). [c.162]

    Определение хрома и ванадия основано на реакциях окисления — восстановления. Наиболее распространенным методом амперометрического определения хрома (VI) и ванадия(V) является титрование раствором соли Мора по току окисления железа (II) на платиновом вращающемся электроде. [c.212]

    В подобных кулонометрах с успехом может быть использован анодный процесс окисления, например иодида до иода и титрование последнего тиосульфатом, ванадила до ванадата в сернокислой средс и титрование солью Мора, серебряного анода до Ag+ и титрование галогенидом, или же катодный процесс восстановления, например соединения трех-ва лентного железа до двухвалентного и титрование перманганатом, воды до ОН -ионов и титрование их какой-либо кислотой и т. д. [c.212]


    На этой зависимости основано потенциометрическое титрование растворами сильных окислителей различных восстановительных систем, напрпмер титрование перманганатом соли Мора. Вблизи эквивалентной точки титрования, когда практически вся восстановленная форма превращена в окисленную, потенциал электрода изменяется резким скачком от добавления небольшого избытка окислителя (рис. 83). [c.145]

    При потенциалах более положительных, чем +0,6 в, например при +1,2 в, в сильнокислой среде на платиновом электроде возможно и восстановление ванадия (V), и окисление железа (И). Поэтому в данном случае до конечной точки титрования наблюдается катодный ток ванадата, величина которого, однако, сравнительно незначительна, так как потенциал +1,2 в соответствует не области диффузионного тока, а начальной части волны восстановления ванадата (кривая 1, рис. 24, i4). После точки эквивалентности, когда в титруемом растворе появятся избыточные ионы железа (II), наблюдается анодный ток их окисления и кривая титрования примет вид, изображенный на рис. 24, д. Если уменьшить кислотность раствора, то электрохимическое восстановление ванадия (V), как указано выше, совсем не имеет места. Тогда при титровании при лотенциале +1,2 в вначале нет никакого тока лишь после конечной точки за счет избыточных Ре2+-ионов возникает анодный ток. Кривая титрования будет иметь вид, изображенный на рис. 24, е. Этот тип титрования находит широкое применение при определении различных окислителей солью Мора (см. гл. VII). [c.78]

    В связи со ступенчатым восстановлением золота (III) и связыванием промежуточной формы — золота (I) в хлоридный комплекс. Поэтому лучше восстанавливать золото (III) избытком соли Мора и титровать не вошедшие в реакцию раствором бихромата калия по току окисления Ре2+-ионов на платиновом электроде при + 1,2 в (МИЭ). Метод позволяет определять десятые доли миллиграмма золота в титруемом объеме. [c.209]

    Ход анализа. Навеску стали растворяют в смеси 20—25 мл серной кислоты (1 5) и 5—10 мл фосфорной кислоты (пл. 1,7 е/см ). Затем прибавляют немного азотной кислоты для полного окисления Fe +, выпаривают до дыма, разбавляют водой до 75—100 мл, добавляют 1,0—1,5 мл 1%-ного раствор нитрата серебра и нагревают раствор до кипения прибавляют 15—20 мл 20%-ного раствора персульфата аммония и кипятят 2—3 мин до появления малинового окрашивания (перманганат-ион). Затем переносят стакан с раствором на песочную баню и при слабом нагревании разлагают персульфат аммония (до прекращения выделения пузырьков кислорода). Жидкость охлал<дают и титруют сумму марганца ( П1), ванадия (V) и хрома (VI) 0,1 н. раствором соли Мора. Затем вновь окисляют восстановившиеся при титровании ионы — марганец (II), хром (111) и ванадий (IV)—раствором персульфата при нагревании до появления малиновой окраски, после чего добавляют 2—3 мл 50%-ного раствора хлорида натрия и кипятят раствор до исчезновения малиновой окраски (селективное восстановление перманганата). Охлаждают раствор и титруют сумму хрома (VI) и ванадия (V) раствором соли Мора. Добавляют 0,1 н. раствор перманганата до появления малиновой окраски, т. е. селективно окисляют ванадий (IV), разрушают избыток перманганата, добавляя по каплям 3%-ный раствор нитрита натрия, и тотчас н<е вводят 0,2—0,3 г тиомочевины для связывания избытка нитрита. Затем титруют раствором соли Мора ванадий (V). Хром и марганец определяют по разности. Титрование проводят с двумя индикаторными электродами при напряжении около 0,1 в. Можно титровать и с одним индикаторным электродом , но титрование с двумя электродами (см. гл. IV) несколько проще в техническом отношении и очень удобно в практике производственных лабораторий [c.248]

    Окисление иридия (III) до иридия (IV) в растворах его комплексных сульфатов можно производить сульфатом церия (IV), хлорной кислотой, висмутатом натрия, а восстановление иридия (IV) до иридия (III)—гидрохиноном, солью Мора и другими восстановителями. Титрование солью Мора комплексных сульфатов иридия (IV) применяют для объемного определения иридия. [c.16]

    Если в растворе наряду с иридием (III) присутствует иридий (IV), а необходимо определить общее содержание иридия, то добавляют раствор соли Мора в количестве, достаточном для восстановления Ir(IV)->1г(П1), и некоторый избыток ее, затем титруют раствором перманганата калия. Титрование в этом случае протекает с двумя скачками потенциала первый при окислении Fe(II) до Fe(III) и второй при окислении Ir(III) до Ir(IV). При расчете содержания иридия объем окислителя, пошедший на титрование железа (II), вычитают. [c.148]

    При концентрировании по первому варианту из раствора тетрабората натрия на стационарном ртутном электроде для предотвращения окисления железа (II) в щелочной среде эксперимент осуществляли следующим образом в электролизер помещали определенное количество буферного раствора и тщательно удаляли кислород, пропуская инертный газ. Полноту удаления кислорода и перемешивание раствора контролировали по величине катодного тока при потенциале —0,4 в. После того, как ток падал до 0,1 мка, в исследуемый раствор вводили определенное количество подкисленного раствора соли Мора (готовили ежедневно). Осаждение гидроокиси железа на электроде проводили при потенциале —0,05 в в течение определенного времени из перемешиваемого раствора. Затем регистрировали катодную поляризационную кривую восстановления осадка. [c.86]


    Зависимость величины предельного тока от количества добавленного реактива представляет собой типичную кривую амперометрического титрования. После полного осаждения цинка ток остается постоянным (рис. 6.34а). Для построения кривой титрования достаточно иметь по 3—4 точки для каждой ветви кривой. Точку эквивалентности находят экстраполяцией. Метод амперометрического титрования отличает от полярографического то, что в полярографическом методе анализа сам определяемый ион должен восстанавливаться (или окисляться) на электроде. Для метода амперометрического титрования это не является обязательным достаточно, чтобы на электроде мог восстанавливаться (или окисляться) хотя бы один из двух участвующих в титровании реагентов или продукт их реакции, т.е. электроактивным может бьггь определяемое вещество, титрант или образующийся продукт. Для проведения метода амперометрического титрования необходимо установить на индикаторном электроде потенциал, отвечающий области диффузионного тока того вещества, которое участвует в электродном процессе и концентрация которого изменяется в процессе титрования. Для этой цели можно использовать реакции осаждения (например, титрование цинка ферроцианидом калия), реакции окисления - восстановления (например, титрование ванадата солью Мора) и реак- [c.765]

    Еще удобнее в практическом отношении и значительно чувствительнее амперометричеокий вариант индикации конечной точки при титровании пятивалентного ванадия солью Мора. Этот метод был предложен Г. А. Бутенко и Г. Е. Беклешовой [303] для определения ванадия в стали, а также И. П. Алимари-ным, Т. К. Кузнецовым и Б. И. Фрид [304, 305] для определения ванадия в феррохроме и рудах. Титрование ведется на платиновом вращающемся электроде при потенциале +1,0 в с использованием диффузионного тока окисления двухвалентного железа, которым титруется пятивалентный ванадий. Метод очень прост и быстр, результаты отличаются высокой точностью, в связи с чем этот метод уже получил распространение -в заводских лабораториях [306]. Амперометрический метод применяется также при определении закиси железа по методу А. В. Шейна для титрования избытка пятиокиси ванадия (солью Мора) или восстановленного ванадия (перманганатом) [307]. Амперометри-чеокое определение ванадия солью Мора хорошо идет также при применении двух индикаторных электродов [308] этот же метод предложен для последовательного титрования пяти- и четырехвалентного ванадия при одновременном их присутствии в растворе пятивалентный ванадий титруют солью Мора, затем в этом же растворе титруют четырехвалентный ванадий перманганатом [309]. Некоторые другие варианты амперометрического определения ванадия приводятся в монографии [273], а также в сборнике [292]. [c.129]

    В процессе титрования индикатор может менять свою окраску или образовывать осадок. Индикаторы применяют главным образом в объемном анализе в методах нейтрализации, окисления-восстановления, осаждения, комплексообразования, а также в колориметрии для определения концентрации ионов гидроксония и гидроксила и величины pH. Индикаторы для метода нейтрализации применяются как для ацидиметрии, так и для алкалиметрии. Они обычно меняют свою окраску вблизи точки эквивалентности, т. е. в конце титрования. Индикаторы, применяемые в методах осаждения и комплексообразования, чаще выделяются в виде ярко окрашенного осадка например, по аргентометричес-кому методу Мора в конце титрования выделяется красно-коричневый осадок Ag2 r04. [c.424]

    При потенциометрическом титровании при реакции нейтрализации используют стеклянный и каломельный электроды. Для определения содержания двухвалентного железа в растворе соли Мора потенциометричес191м титрованием при реакции окисления — восстановления используют в качестве индикаторного электрода платиновый. Учащиеся должны освоить приемы вьшолнения этого анализа в стакан с мешалкой наливают анализируемый раствор соли Мора, погружают электродную пару платиновый -насыщенный каломельный электроды, подсоединяют их к измерительной схеме и титруют из бюретки 0,1 н. раствором перманганата калия до скачка потенциала. Титрование ведут дважды сначала определяют приближенный объем рабочего раствора, израсходованный на титрование, а затем — точный объем. [c.227]

    Определение ванадия (V) основано на реакциях окисления — восстановления, причем наиболее раопространенным является метод амперометрического титрования ванадия(У) солью Мора по току окисления последнего на платиновом вращающемся электроде. Этот метод был предложен И. П. Алимариным и Т. К. Кузнецовым и вслед за ними Г. А. Бутенко и Е. С. Рынской для определения ванадия, хрома и марганца в легированных сталях [1]- [c.114]

    Уран (VI) можно титровать по методу окисления-восстановления двумя способами прямое титрование урана (VI) восстановителями и титрование урана (IV). Для прямого титрования нужны сильные восстановители, так как нормальный потенциал системы /ypaH(VI)/ypaH(IV) составляет всего +0,334 В. К таким восстановителям относятся титан(III) [8] и хром(II) [9j, предложенные также для титрования ванадия(V) (см. Ванадий ), и соль Мора в сильной фосфорно-кислой среде, снижающей редокс-потенциал системы ферри-ферро [10]. [c.276]

    Каплю содовой вытяжки подкисляют 5 М НС1 и добавляют к ней кристалл соли Fe + (соли Мора), не содержащей Fe +. Темно-синее окрашивание (берлинская лазурь) указывает на присутствие гексацианоферрата(1П). Происходит окисление Fe2+ в Fe + и восстановление [Ре(СЫ)б] в [Ре(СЫ)б] . Гек-сацианоферрат(П) образует при этом беловатый или светло-голубой осадок, который на воздухе быстро становится синим, но он не мешает обнаружению [Fe( N)e] (см. разд. 36.15.3). [c.65]

    В отличие от N114, N07 является анионом, который растворим и не удерживается в почвах. Поэтому N0 дождевой воду или из удобрений, а также появляющийся в результате окисления почвенного органического вещества и отходов животных вымывается из почв в реки. Помимо биологической ассимиляции, денитрификация в средах с низким содержанием кислорода является наиболее важным путем, посредством которого нитраты удаляются из почв, рек и подземных вод. По существующим оценкам, в реках северо-западной Европы половина общего прихода азота в дренирующие воды теряется в результате процесса денитрификации до того, как эти воды достигают моря. Таким образом, в условиях низкого окислительно-восстановительного потенциала РНФ мобилизуется в результате восстановления железа (П1), а N07 теряется, что подчеркивает важность окислительно-восстановительных процессов в химии окружающей среды. [c.142]

    Для окисления ванадия прибавляют по каплям 1 %-ный раствор перманганата калия до появления розовой окраски, не исчезающей в течение 1—2 мин. Для восстановления избытка перманганата прибавляют 1—2 капли 5 %-ного раствора нитрита натрия при перемешивании (малиновая кислота раствора исчезает) и тут же добавляют 2 г мочевины (карбамида) для разрушения избытка нитрита и перемешивают. Добавляют 80 мл разбавленной (1 1) H2SO4, 6 капель раствора фенилантраниловой кислоты (2 г/л, содержащей 2 г/л карбоната натрия), раствор при этом окрашивается в розово-фиолетовый цвет. Титруют 0,01 н. раствором соли Мора до перехода цвета раствора в зеленый. [c.341]

    Окисление ннтрит-иона тетранитрометаном в присутствии нитроксилов. Другим процессом, где нитроксилы проявляют каталитические свойства, является восстановление тетраннтро-метана нитрит-ионом. Взаимодействие тетранитрометана с нитроксильными моро- и бирадикалами при малых степенях превращений описывается кинетическим уравнением реакций второго порядка и включает две стадии [32]  [c.76]

    Содержание марганца (II) может быть определено сначала окислением его в марганец (VII) перйодатом или висмутатом, а затем восстановлением образовавшегося перманганата избытком восстановителя (Н0С0О4, солью Мора и т. п.). Избыток восстановителя обратно оттитровывают стандартным раствором перманганата. [c.199]

    За последние годы предложено несколько вариантов этого метода для определения ванадия в различных объектах в металлическом ванадии, в хромитев урансодержащих веществах по-прежнему много внимания уделяется этому методу при анализе легированных сталей причем особенно для одновременного определения нескольких компонентов — ванадия, хрома и марганца Предложен этот метод и для определения ванадия и хрома в силико-алюминиевых катализаторах крекинга нефти, причем вместо обычного в таких случаях селективного окисления хрома пользуются восстановлением его до трехвалентного при помощи азида натрия хром (III) не мешает титрованию ванадия солью Мора. Можно селективно определять ванадий и железо при совместном их присутствии в растворе сперва титруют ванадий солью Мора, затем — общее содержание железа аскорбиновой кислотой. Из общего содержания железа вычитают то количество железа, которое было израсходовано (в виде соли Мора) на титрование ванадия [c.181]

    Если одновременно определяют и ванадий и хром, то окисление проводят персульфатом в присутствии нитрата серебра (кислотность раствора не должна быть выше 2 п.), удаляют избыток персульфата кипячением. Для устранения влияния марганца (VII), образовавшегося в результате окисления марганца в пробе, добавляют 5 мл 5%-ного раствора хлорида натрия (по Бутенко и Беклешовой) или несколько капель концентрированной соляной кислоты (по Парксу и Агацци), кипятят в течение 3 мин, охлаждают и титруют солью Мора сумму ванадия и хрома. Затем окисляют восстановленный при титровании ванадий перманганатом на холоду, как указано выше, и титруют только ванадий, так как хром в этих условиях не окислится. Содержание хрома определяют по разности. [c.182]

    Ход анализа. В сосуд для титрования вносят сперва ацетатный буфер, на фоне которого ведуг титрование, затем вводят 0,02 мл 0,1 AI раствора сульфата железа (III) и 0,06 мл 0,05 М комплексона III для переведения почти всего железа (III) в комплексное соединение. Затем добавляют 0,2 мл 0,1 М раствора соли Мора и налагают напряжение ПО мв. При таком напряжении ток в системе не появляется, так как разность потенциалов восстановления комплексоната железа (П1) и окисления свободных ионов железа (II) больше, чем приложенное напряжение, и процесс электролиза начаться не может. Начинают титрование 0,05 М раствором комплексона III, причем после добавления нескольких его капель сила тока резко возрастает (точка б ка рис. 70), потому что комплексон III связал остатки и начал взаимодействовать с [c.320]

    В случае метода обратного титрования к анализируемому раствору после кипячения с Na I или НС1 приливают из бюретки точный объем раствора соли Мора, так чтобы она находилась в избытке, а затем избыток ее оттитровывают раствором КМПО4 до появления устойчивой слаборозовой окраски. При обратном титровании ванадиевая кислота не будет мешать определению хрома, так как, сколько раствора соли Мора затратится на ее восстановление, столько же (при одинаковой нормальности) раствора КМПО4 потребуется на ее обратное окисление. [c.332]

    Определение ванадия в стали и чугунах производится обычно объемным методом, основанным на восстановлении ванадия солью Мора. Возможно прямое титрование ванадия солью Мора или добавлением избытка соли Мора с последующим окислением избыточного двухвалентного железа персульфатом аммония (персульфат аммония окисляет на холоду только железо, но не ванадий) и титрованием восстановленного ванадия перманганатом. Эти методы дают очень хорошие результаты. А. М. Дымов [226] в качестве стандартного метода для определения ванадия в чугунах и сталях приводит метод прямого титрования пятивалентного ванадия солью Мора с индикатором — фенилантрани ловой кислотой или потенциометрически. Потенциометрический метод с применением соли Мора рекомендуется и другими исследователями [301, 302]. [c.129]

    Отложение железа. Крупнейшие месторождения железных руд представляют собой полосчатые железорудные формации (ПЖФ). Осаждение оксЩов железа происходило здесь в основном в период от 2,8 до 1,6 млрд. лет назад. До того времени вьщелявшееся из магматических пород морского дна железо накапливалось в большом количестве в виде ионов Fe вместе с другими восстановленными ионами (S , Мп ) в морях. Когда начался оксигенный фотосинтез цианобактерий, ионы стали окисляться в SO , а Fe -в Fe " . Последние труднорастворимы. Осаждение окиси железа на больших площадях происходило в тех местах, где содержащие железо глубинные воды приходили в соприкосновение с кислородсодержащими поверхностными водами. В полосчатых железорудных формациях чередуются слои окиси железа и слои кремнезема (толщиной от 0,2 до 2,0 мм). Как полагают, эта слоистость-результат сезонного ритма фотосинтеза в водоемах, где формировались осадки. Лишь тогда, когда завершилось окисление серы и железа в морской воде, кислород стал накапливаться в атмосфере (начиная с периода 1,6 млрд. лет назад). [c.516]

    Так как число миллиграмм-эквивалентов КМПО4, израсходованных на окисление соли Мора, равняется числу миллиграмм-эквивалентов Т1С1з, требующихся для восстановления полученного сульфата трехвалентного железа, то [c.275]

    Предположим, например, что на окисление взятого объема раствора соли Мора израсходовано 22,5 мл 0,1 н. раствора КМПО4, имеющего поправочный коэффициент 1,094, а на восстановление полученного сульфата окиси железа израсходовано 27,0 0,1 н. раствора Т1С1з. Тогда поправочный коэффициент раствора Т С1з равен  [c.275]

    Предположим, например, что на окисление взятого объема раствора соли Мора израсходовано 22,5 мл 0,1 N раствора КМПО4, имеющего поправочный коэфициент 1,(Ш, а на восстановление полученной сернокислой окиси железа Ре2 (804)3 израсходовано 27 мл 0,lN раствора Т1С1з. [c.222]


Смотреть страницы где упоминается термин Мору окисления-восстановления: [c.124]    [c.341]    [c.116]    [c.30]    [c.11]    [c.124]    [c.46]    [c.497]    [c.473]    [c.134]    [c.343]    [c.352]    [c.519]    [c.45]    [c.187]    [c.21]   
Количественный анализ (0) -- [ c.424 ]




ПОИСК





Смотрите так же термины и статьи:

Морен

Мории

окисление—восстановление



© 2025 chem21.info Реклама на сайте