Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентности углы

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]


    Эти выводы о взаимном расположении атомов в молекулах N 1.1 и Н О соответствуют действительности. Значител[>пая полярносп. молекул воды ((1= 1,84 0) и аммиака ( 1=1,48 0), а также данные структурных исследований, свидетельствуют о том, что молекула Н2О имеет угловое строение, а молекула ЫНз построена в форме пирамиды. Однако углы между связями (валентные углы) отличаются от 90° в молекуле воды угол НОН составляет 104,3°, а в молекуле аммиака угол НЫН равен 107,8°. [c.135]

    Это же соображение можно применить для предсказания относительной величины углов между связями валентных углов) в изоэлектронном ряду молекул СН4, NHз и Н2О . Все эти молекулы имеют одинаковое стерическое число (СЧ = 4). Однако учитывая неодинаковое отталкивание между неподеленными парами и связывающими парами электронов, можно предсказать, что валентные углы в молекулах ЫНз и Н2О окажутся Тетраэдрического угла (109,5°). Экспериментальные значения валентных углов в этих молекулах согласуются с таким предсказанием  [c.493]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]


    Еще более широкие возможности открывает варьирование состава минералов в силу их исключительного многообразия. Кварц и силикаты, слагающие подавляющее большинство-пород, содержат в основном связи Si—О и связи катион — кислород атомы алюминия могут быть катионами или заменять Si. Эти связи играют различную роль при разрушении силикатных минералов разных структурных типов [275]. В кварце и каркасных силикатах (полевых шпатах) обязательно рвутся силоксановые связи в цепочечных и ленточных си-ликатах возможно скольжение и разрыв по определенным плоскостям, образованным только связями Ме—О в островных силикатах связи Si—О—Si отсутствуют. Перечисленные связи различаются по геометрическим параметрам (длина, валентные углы), распределению электронной плотности и энергии связи колебания этих величин для отдельных классов силикатов имеют более узкие пределы, [276]. Важно, что во всем диапазоне изменений полярности связей Si—О они остаются существенно ковалентными, несмотря на большую разницу [c.93]

    Атомы могут колебаться либо вдоль линии химической связи (валентные колебания), либо за счет изменения валентных углов (деформационные колебания), как это показано на примере молекулы воды  [c.146]

    Влияние несвязывающей электронной пары центрального атома на строение молекул. Выше мы рассмотрели правильные геометрические формы молекул и комплексов с валентными углами 180, 120, 109,5, 90°. Однако, согласно экспериментальным данным, значительно чаще встречаются молекулы и комплексы с несколько иными значениями валентных углов. Валентные углы в молекулах НзЫ и НгО, например, составляют /1НЫН =107,3° и .НОН =104,5°. Согласно теории гибридизации центральные атомы этих молекул образуют химические связи за счет электронов хр -гибридных ор-бита/ ей. У атома углерода на четыре ар -гнбридиые орбитали приходится четыре электрона  [c.71]

    В представлениях теории гибридизации уменьшение валентного угла НЭН в ряду СН ( 09,5°) — НзЫ (107,3°) - Н О (104,5°) объясняется следующим образом. Поскольку в ряду С—N—О энергетическое различие между 25- и 2р-орбиталями (см. рис. 11) увеличивается, вклад 25-орбиталей при гибридизации с 2р-орбиталями уменьшается. Это приводит к уменьшению валентного угла и постепенному приближению его к 90°. [c.72]

    Для объяснения отличия валентных углов в молекулах НзО и ЫНз от 90° следует принять во внимание, что устойчивому состоянию молекулы отвечает такая ее геометрическая структура и такое пространственное расположение электронных облаков внеп, -ннх оболочек атомов, которым отвечает наименьпшя потенциальная энергия молекулы. Это приводит к тому, что при образовании молекулы формы и взаимное расположение атомных электронных облаков изменяются по сравнению с их формами и взаимным расположением в свободных атомах. В результате достигается более полное перекрывание валентных электронных облаков и, следовательно, образование более прочных ковалентных связей. В рамках метода валентных связей такая перестройка электронной [c.135]

    Циклы с числом звеньев меньше пяти сильно напряжены вследствие высокого углового напряжения, а именно, больших искажений их валентных углов по сравнению с тетраэдрическим, поэтому циклизация трех- и четырехчленных колец маловероятна. Наименьшую напряженность имеют шестичленные циклы. Возможно также образование пяти- и семичленных циклов. Наличие циклов с большим, числом звеньев (более 12) ранее считалось практически маловероятным, ввиду того, что их напряженность примерно равна напряженности линейных полимеров [9, с. 75]. Однако в последнее время было показано, что в зависимости от условий проведения равновесной поликонденсации диэтиленгликоля и адипиновой кислоты в отсутствие катализатора наблюдается образование макроциклов, характеризующихся распределением по молекулярным массам, величина которых изменяется от 200 до 1000 [18]. [c.161]

    В классической стереохимии при рассмотрении расположения атомов в пространстве принимались во внимание только межатомные расстояния и валентные углы. Уже это позволило понять многие особенности поведения молекул, в первую очередь циклических и оптически деятельных. В основу конформационных представлений положен установленный экспериментально факт, что пространственные взаимоотношения между непосредственно не связанными друг с другом нейтральными атомами определяются не столько их объемами, зависящими от атомных радиусов, сколько эффективными, или ван-дер-ваальсовыми, объемами. Эти объемы, получившие в последние годы название конформационных, гораздо больше атомных (например, атомный радиус водорода равен 0,030 нм, а конформационный — 0,120 нм), и именно ими определяется относительное расположение в пространстве отдельных частей молекул, если только на их взаимоотношениях не сказываются какие-либо другие еще более сильные взаимодействия. В частности, пространственное расположение атомов в молекулах алканов и циклоалканов определяется преимущественно конформационными объемами близлежащих, нп друг с другом не связанных атомов водорода. При сближении этих атомов на расстояния, несколько превышающие сумму их ван-дер-ваальсовых радиусов, между ними возникают силы отталкивания. Когда расстояния между несвязанными атомами равны или близки к этой сумме, силы отталкивания резко возрастают. Дальнейшее сближение или перекрывание ван-дер-ваальсовых радиусов может привести к неустойчивости молекулы и даже к ее разрушению. Под влиянием сил отталкивания все атомы водорода в молекуле стремятся расположиться как можно дальше друг от друга. [c.15]


    Превращение пирамидальной молекулы НдР в тетраэдрический нон РН1 должно сопровождаться существенным изменением валентного угла - ИРН (от 93,7 до 109,5°), поэтому электронодонорные свойства Н3Р значительно ослаблены по сравнению с H3N. Так, фосфин в воде растворяется, но соединений при этом не образует. [c.368]

    Для характеристики молекулярных цепей часто используют также отношение размеров клубка к размерам, которые имела бы та же макромолекула при условии свободного враще я вокруг всех простых связей цепи главных валентностей а = /г /Л св.вр (при сохранении валентного угла). Как видно из сравнения уравнений (9) и (10), величина о определяется влиянием на размеры клубка только факторов, связанных с условиями внутреннего вращения в цепи. Влияние валентных углов, т. е. геометрической структуры цепи, при такой характеристике исключается. [c.31]

    В молекуле любого органического соединения, не имеющего ионизованных или существенно поляризованных атомов или групп, атомы водорода стремятся расположиться в пространстве так, чтобы расстояния между ними были наибольшими без существенной деформации валентных углов. Поскольку присутствие полярных атомов в углеводородах сравнительно редкое явление, а ионизация наблюдается только в некоторых специфических условиях, в этих соединениях роль конформационных эффектов особенно велика и их обязательно надо учитывать. Однако чтобы избежать упрощений, следует помнить, что указанному выше стремлению к переходу в наиболее выгодную конформацию препятствует тепловое движение, которое возвращает большую или меньшую часть молекул на более высокие энергетические уровни, т. е. переводит их в менее выгодные конформации. Это тем более справедливо, чем выше температура. [c.38]

    Информацию о строении вещества можно получить, исследуя его физические и химические свойства. В частности, с помощью физических методов исследования определяют основные параметры молекул — межъядерные расстояния, валентные углы и геометрию молекул. [c.42]

    Длины и энергии связи, валентные углы, а также экспериментально определяемые магнитные, оптические, электрические и другие свойства веществ непосредственно зависят от характера распределения электронной плотности. Окончательное заключение о строении вещества делают после сопоставления информации, полученной разными методами. Квантовомеханическая теория химической связи обобщает совокупность экспериментально полученных данных о строении вещества. [c.43]

    Дайте описание химической связи и строения молекулы Н О в рамках моделей локализованных связей, образованных перекрыванием 2р- и 1.5-орбиталей либо sp - и ls-орбиталей. Как согласуются предсказания валентного угла Н—О—Н, основанные на этих моделях, с его экспериментальным значением 105° Экспериментально установлено, что валентный угол Н—S—Н равен 92. Укажите возможную причину того, что валентный угол в HjS намного ближе к значению предсказываемому для Н2О в рамках одной из двух указанных моделей. [c.562]

    Для цепи с фиксированными валентными углами, но полной свободой вращения вокруг связей [c.30]

    Для цепей с фиксированными валентными углами и заторможенным внутренним вращением [c.30]

    Энергия вращательных переходов зависит от массы и формы молекул. Отсюда изучение вращательных спектров (длинноволнового инфракрасного и радиоволн) позволяет судить о пространственной структуре молекул, о межъядерных расстояниях и валентных углах. [c.146]

    Дипольный момент молекулы SO2 равен 1,61 D, молекулы СО2 — нулю. Одинаковы ли валентные углы OSO и ОСО Ответ мотивировать. [c.66]

    Каждая конформация характеризуется своим набором расстояний между несвязанными атомами, а следовательно, своей суммой несвязанных взаимодействий (отталкиваний несвязанных атомов). Таким образом, разные конформации любой органической молекулы обычно энергетически неравноценны, даже если длины всех ее связей и валентные углы не отклонены от нормы. [c.16]

    ВзН см. разд. 13-2). В этой молекуле к центральному атому бора присоединены три атома водорода. Согласно теории локализованных молекулярных орбиталей, связь в этой молекуле осуществляется в результате гибридизации 2х-орбитали и двух 2р-орбиталей атома бора с образованием трех эквивалентных хр -гибридных орбиталей (рис. 13-3). Каждая гибридная орбиталь имеет на одну треть 5-характер и на две трети р-характер. Поскольку любые две р-орбитали лежат в одной плоскости, а х-орбиталь не имеет пространственной направленности, три хр -ги-бридные орбитали лежат в одной плоскости. Эти три хр -гибридные орбитали, перекрываясь с тремя водородными 1х-орбиталями, образуют три эквивалентные локализованные связывающие орбитали. Каждая из таких связывающих (хр -ь 1х)-орбиталей занята в молекуле ВН3 парой электронов, как это схематически показано на рис. 13-4. На основании представления о гибридньгх орбиталях можно предсказать, что молекула ВН3 должна иметь плоскую тригональную структуру. Угол между межъядерными осями Н—В—Н, называемый валентным углом Н—В—Н, должен составлять 120°. [c.553]

    Длина молекулярной цепи, вытянутой в плоский зигзаг, Амане определяется числом мономерных звеньев, составляющих цепь, длиной связей и величиной валентных углов. Эта длина, однако, является далеко не достаточной характеристикой размеров макромолекул. [c.29]

    Эластомеры можно разделить на две группы — пластицирую-щиеся и непластицирующиеся. В процессе переработки возможна как сдвиговая, так и термоокислительная пластикация полимеров. Большинство эластомеров при температуре переработки в течение коротких промежутков времени, соответствующих длительности технологических циклов , практически не изменяют своих основных показателей таким образом, пластикация обусловлена в основном возникновением высоких сдвиговых напряжений, приводящих к деформации валентных углов и гомолитическому распаду связей [8]. Этот механизм подтверждается тем, что в большинстве случаев интенсивность механодеструкции увеличивается при понижении температуры. Считается также, что следствием деформации может быть накопление потенциальной энергии и перевод цепи в активированное состояние, в котором повышается реакционная способность различных групп, в частности, скорость термоокислительной деструкции [9]. [c.76]

    Рентгеноструктурный анализ показывает, что молекула этилена действительно плоская и что ее валентные углы в плоскости молекулы очень близки к 120°, как это предсказывается на основе модели с хр гибридиза-цией точнее, углы Н—С—Н равны 117°, а углы Н—С—С 121,5°. Таким образом, структура молекулы jH хорошо согласуется с предсказываемой теорией молекулярных орбиталей и является отличным примером образования двойной связи. [c.568]

    Таким образом, сочетание модифицированного принципа геометрического соответствия [62] с моделью циклического переходного состояния, в состав которого входят и субстрат и катализатор, по-видимому, наиболее логично может объяснить механизм реакции Сз-дегид-роциклизации углеводородов на поверхности Pt/ . Что же касается некоторой модификации принципа геометрического соответствия, то здесь необходимо сделать небольшое пояснение. В тех случаях, когда переходное состояние близко по геометрическим параметрам к исходным молекулам и деформации невелики, наше толкование геометрического соответствия сливается с его толкованием в мультиплетной теории. В случае же Сз-дегидроциклизации и гидрогенолиза пятичленного кольца положение иное в свободном циклопентане все пять С—С-связей равны, а в переходном состоянии одна из них сильно растянута и валентные углы искажены. Поэтому положения мультиплетной теории в их классическом толковании здесь неприменимы. В связи с этим предложена [63] новая (в определенном смысле, более строгая) формулировка должно иметься геометрическое соответствие между молекулами в переходном состоянии и поверхностью катализатора. Такого рода де-формационно-мультиплетные представления позволили охватить несколько больший круг явлений, че.м это делала мультиплетная теория, не теряя ничего пз достижений последней. В частности, эти соображения хорошо согласуются с конформационными представлениями, благодаря которым можно объяснить ряд тонких эффектов, проявляющихся в ходе Сб-дегидроциклизации. [c.210]

    Валентные углы в гидридах элементов групп VA и VIA [c.499]

    В полярность и прочность связи Э — Н уменьшается. По этой же причине несвязывающее двухэлектронное облако становится пространственно менее направленным, значение валентного угла - НЭН приближается к 90° и наблюдается уменьшение электрического момента диполя молекул. [c.382]

    Взаимным отталкиванием связывающих и несвязывающих электронных пар центрального атома можно объяснить влияние на величину валентных углов природы периферических атомов (или их группировок). Например, в рядах И )Ы (107,3°) и МРз(102°), Н2О (104,5°) и 0р2(103°) валентные углы уменьша-птся. Связывающее электронное облако занимает тем меньший объем (локализовано в большей степени), чем выше электроотрицательность периферического [c.76]

    Свободные молекулы SO3 (в газообразном состоянии) построены в форме правильного треугольника, в центре которого находится атом серы, а в вершинах — атомы кислорода. Как н в молекуле SO2, атом серы находится здесь в состоянии s/ --rn6pH дизации в соответствии с этим ядра всех четырех атомов, входящих в состав молекулы SO3, расположены в одной плоскости, а валентные углы OSO равны 120"  [c.387]

    Две вышеизложенные модели электронного строения КНз предсказывают различные величины валентного угла Н—N—Н, но одинаковую форму молекулы. (Под формой молекулы мы понимаем положения атомов, которые могут быть установлены экспериментально, но не положение неопределенной пары электронов, о котором можно только строить предположения.) Обе модели связи в КНз позволяют утверждать, что эта молекула имеет тригонально-пирамидальную форму. Однако модель образования связей из 2р-орбиталей азота и 15-орбиталей водорода предсказывает, что валентный угол Н—N—Н имеет величину 90° (угол между р-орбиталями), тогда как, согласно модели образования связей из гибридных хр -ор-биталей азота и Ь-орбиталей водорода, валентный угол Н—N—Н имеет тетраэдрическое значение 109,5° (угол между гибридными 5р -орбиталя-ми). [c.561]

    Структура молекул, в которых к центральному атому присоединены неодинаковые атомы, несколько отличается от идеальных структур, показанных на рис. 11-3. Так, в молекуле СН3С1 углы НСН равны 110,5°, а угол С1СН равен 108,5° и то, и другое значение отличается от идеального тетраэдрического угла 109,5°. В качестве других примеров подобных отклонений от идеальной геометрии приведем этилен и формальдегид. В обеих молекулах атомы углерода имеют СЧ = 3, которому должны отвечать идеальные валентные углы 120°. Однако экспериментально наблюдаются такие структуры  [c.493]

    НИМИ останутся неизменными и лишь валентные углы увеличатся до 120°. Между тем, деформация молекулы циклопентана при такой адсорбции, как показано на рис. 25, будет гораздо больше одна из пяти С—С-связей обязательно должна будет существенно растянуться. Разрыв этой растянутой (а следовательно, ослабленной) связи и присоединение водорода происходят по дублетной схеме мультиплетной теории, но для достижения необходимой деформации молекула должна предварительно адсорбироваться на активном центре, представляющем собой полный секстет. Поэтому такая схема получила название секстетно-дублетной. Такой секстетный способ адсорбции на Pt (грань 111) вызовет, естественно, необходимую деформацию исходной молекулы циклопентана и, наоборот, не приведет к сколько-нибудь значительному растяжению связей в циклогексанах и алка-нах. Очевидно этим и обусловлено практически полное отсутствие гидрогенолиза циклогексанов и алканов на Pt-катализаторах в обычных условиях. [c.126]

    Завершая обсуждение структур с СЧ = 5, рассмотрим такие молекулы, в которых к центральному атому присоединены неодинаковые атомы. Примерами могут служить СНзРР и ОРд. В каждой из этих молекул наименее электроотрицательные группы занимают экваториальные положения и вызывают отклонения от идеальных значений валентных углов 90 и 120°, подобные вызываемым наличием неподеленных электронных пар. Вот почему наблюдаются следующие структуры  [c.496]

    Любая молекула состоит из двух или более атомов, связанных между собой различными электрическими силами. Атомы в свою очередь могут рассматриваться как сочета ше ядер и электронов. Хорошо известно, что молекулы не являются жесткими структурами, т. е. в, них существуют колебания атомов друг относительно друга около некоторого положения равновесия. Эти колебания могут происходить параллельно направлению валентной силы, связывающей два атома, в результате чего изменяется расстояние между ними. Такие колебания называются колебаниями валентного типа. Колебания атомов в многоатомной молекуле в направлении, перпондикуляриом к направлению валентной силы, вызывают изменения валентного угла. Такие колебания принадлежат к деформационному типу. Существуют также вибрационные частоты, возникающие в результате сложного движения, влияющего на первоначальный скелет молекулы или на часть этого скелета. Они могут включать как валентные, так и деформационные колебания. [c.315]

    Размеры молекулярных клубков помимо числа п и длины связей I и валентных углов определяются условиями внутреннего вращения в цепях. Статистические расчеты зависимости величины от этих параметров были проведены для ряда моделей молекулярных цепей, различающихся по степени их приближения к реальным цепям. Простейщей из этих моделей является цепь, состоящая из свободносочлененных звеньев. В такой цепи направления соседних звеньев полностью некоррелированы, т. а. все направления любого звена равновероятны и независимы от направлений его соседей по цепи. Задача нахождения распределения конфигураций для такой цепи аналогична так называемой задаче свободных блужданий (нахождения пути свободно диффундирующей частицы, например, молекулы газа), и рещение ее приводит к соотношению [1—3]  [c.30]

    Все четыре ковалентных связи з глерода в метане (и в друг подобных соединениях) равноценны и симметрично нанравло в пространстве. Атом углерода находится как бы в центре тетр эдра (правильной четырехгранной пирамиды), а четыре соед неииых с ним атома (в случае метана — четыре атома водорода)-в вершинах тетраэдра (рис. 120). Углы между направлениял любой пары свя.зей (валентные углы углерода) одинаковы н с ставляют 109° 28.  [c.454]

    Экваториальная ориентация неподеленных пар в и С1Рз должна вызывать отклонения от идеальных валентных углов 90 и 120°. Действительно, экспериментальные структурные данные свидетельствуют о наличии ожидаемых искажений  [c.496]

    Пространственное расположение sp -орбиталей в молекуле этана показано на рис. 13-18,а экспериментально установленные значения длин связей и валентных углов показаны на рис. 13-18,6. Молекулы пропана (СНз— Hj—СН3), бутана ( Hj— Hj— Hj—СН3) и большого класса углеводородов с линейными и разветвленными цепочками атомов углерода, включая различные фракции керосина, бензина и парафинового воска, могут быть построены при помощи тетраэдрически гибридизованных орбиталей углеродных атомов, которые перекрываются друг с другом и с 15-орбиталями атомов водорода. Подобные углеводороды называются насыщенными, потому что в них каждый атом углерода использует все четыре валентные орбитали для соединения с другими атомами посредством а-связей. [c.566]


Смотреть страницы где упоминается термин Валентности углы: [c.58]    [c.60]    [c.77]    [c.154]    [c.45]    [c.129]    [c.31]    [c.345]    [c.499]    [c.562]    [c.571]   
Физическая биохимия (1949) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак Валентные углы

Вагнер валентные углы

Валентность, валентный угол. Гибридизация

Валентные углы Валеролактон

Валентные углы Валин

Валентные углы атомов

Валентные углы в гидридах

Валентные углы в молекулах, содержащих

Валентные углы в хлорзамещенных метана

Валентные углы в циклооктатетраене

Валентные углы валентную оболочку

Валентные углы влияние двойных связей

Валентные углы влияние неподеленных

Валентные углы гетероатомов

Валентные углы деформация

Валентные углы для рацемизации оптически деятельных бифенилов

Валентные углы и дипольные моменты фосфинов

Валентные углы и колебательные частоты

Валентные углы и конфигурация молекул

Валентные углы и межмолекулярное расстояние

Валентные углы и мезомерия

Валентные углы и орбиты

Валентные углы изменение при замыканий цикло

Валентные углы имеющем незаполненную

Валентные углы кратные связи

Валентные углы напряженные

Валентные углы определение из микроволновых

Валентные углы при гибридизации

Валентные углы при центральном атоме

Валентные углы при центральном атоме, имеющем . незаполненную валентную оболочку

Валентные углы соединений трехковалентного

Валентные углы спектров

Валентные углы схема расчета

Валентные углы таблицы опытных величин

Валентные углы у атомов с валентными уровнями, содержащими более восьми электронов

Валентные углы фосфатов

Валентные углы фосфониевых соединений

Валентные углы фосфора

Валентные углы циклоалканов

Валентные углы циклопентана

Валентные углы экспериментальные значения

Валентные углы этилена

Валентные углы, влияние на свободное

Валентные углы, влияние на свободное вращение около простых связей

Валентные углы, образованные атомами с заполненным октетом

Валентные углы, определение с помощью

Валентный угол

Валентный угол

Валентный угол Валерамид

Валентный угол метиловый эфир

Влияние валентных углов

Вода Валентный угол

Вычисление валентных углов

Вычисление межатомных расстояний и валентных углов в структурах

Вычисления распределения спиновой плотности и валентных углов

Галогениды, валентные углы

Геометрическая форма, длина связей и валентные углы для многоатомных молекул и ионов, содержащих два или более центральных атома

Гибридизация влияние на валентные углы

Гибридизация орбиталей валентные углы

Двойная связь углы валентные

Динамическая модель цепи с фиксированным валентным углом и заторможенным внутренним вращением

Дипольный момент, валентный угол и свободное вращение

Длина связей и валентные углы для многоатомных молекул, радикалов и ионов с одним центральным атомом sp-элемента

Длины связей и валентные углы

Другие факторы, влияющие на величину валентных углов, и межатомные расстояния. Работы последних лет

Зависимость валентных углов и межатомных расстояний от гибридизации атомов

Зависимость гибридизацией и величиной валентных углов

Закономерности в валентных углах многоатомных молекул

Изменение валентных углов в зависимости от электроотрицательности лигандов

Изменение межатомных расстояний и искажение валентных углов

Изотопы—11. Радиоактивные изотопы—16. Молекулы—19. Валентные углы и расстояния—22. Водородная связь—23. Дипольные моменты и поляризуемость

Искажение валентных углов

Исследование взаимодействия молекулярного кислорода со свободными валентностями угля.—Н. Н. Тихомирова, М. И. Маркин, И. В. Николаева и Воеводский

Карбоксипептидаза валентные углы металл лиганд

Квантовомеханическая интерпретация валентных углов

Кислород валентные углы

Кислород угол валентности

Конфигурации координационных сфер. Валентные углы и координационных сферах

Конформация шестичленного цикла и валентные углы в нем Особенности конформации относительно экзоциклической связи

Межатомные расстояния и валентные углы в пептидной цепи

Межатомные расстояния. Валентные углы

Межэлектронное отталкивание влияние на валентный угол

Метан валентные углы, таблица значений

Микроволновая спектроскопия определение валентных углов

Многоатомные частицы с центральным атомом sp-элемента. Тип гибридизации. Геометрическая форма. Энергия и длина связи. Валентные углы. Полярность

Молекула валентные углы

Направленная ковалентная связь. Прочности связей валентные углы. Магнитный критерий типа связи Природа атомных орбит и их способность к образованию связей

Нафталин валентный углы

Несвязывающие или неподеленные пары электронов и валентные углы

Описание таблиц межатомных расстояний V. Некоторые соединения, содержащие неи валентных углов................. И конденсированные бензольные кольца

Описание таблиц межатомных расстояний и валентных углов

Определение валентных углов и длин связей

Органические вещества соединения валентные углы

ПРИЛОЖЕНИЕ II. Валентные углы и межатомные расстояния для гетероатомных и сходных соединений

Полиметиленовые углеводороды деформация валентных углов

Представления, базирующиеся на определяющей роли валентных взаимодействий в структуре углей

Приложение. Длины связей и валентные углы. (А. Макколл)

Программа расчета межатомных расстояний и валентных углов

СТОЯНИЙ И ВАЛЕНТНЫХ УГЛОВ

Силовые С валентного угла

Стереохимия Валентные углы и длины связей

Стереохимия Валентный угли и длины связей

ТАБЛИЦЫ МЕЖАТОМНЫХ РАССТОЯНИЙ И ВАЛЕНТНЫХ УГЛОВ В МОЛЕКУЛАХ НЕКОТОРЫХ ГРУПП ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ТАБЛИЦЫ МЕЖАТОМНЫХ РАССТОЯНИЙ И Список литературы по кристаллографии и ВАЛЕНТНЫХ УГЛОВ В МОЛЕКУЛАХ НЕКОорганической кристаллохимии

Углерод валентные углы

Углерод связей и валентные углы

Углерода атом валентные углы

Углерода атом дигональный,валентные углы

Углы между связями валентные углы

Форма молекул валентные углы

Циклобутан валентные углы

Циклогексан валентные углы

Циклопропан валентные углы

Электрон, диффракция углы валентности

Электронных пар отталкивание валентные углы

Электроотрицательность и валентные углы

Электроотрицательность и связь и валентный угол

Этилен длины связей и валентные углы

Эфиры сложные валентные углы

Эффекты изменения валентных углов и силы соседних связей

порядок связи валентные углы

триметилборазол гибридизация орбиталей и валентные углы

триметилборазол корреляция электронов и валентные углы



© 2025 chem21.info Реклама на сайте