Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металл переходные, карбонилы

    Исследуя полимеризацию олефинов на цеолите СаХ при температурах 300—350°С, Нортон [253] обнаружил, что скорости полимеризации уменьшаются в ряду изобутен > пропилен > этилен, т. е. в соответствии со снижением стабильности ионов карбония. Жидкие продукты полимеризации пропилена и в этом случае отличались сложным составом, они содержали главным образом олигомеры (Сз) , где и = 2—6. В этой работе впервые обращается внимание на то, что механизм образования продуктов конденсации на цеолитах во многом близок к механизму сопряженной полимеризации. На всех цеолитах X, за исключением образцов с обменными катионами переходных металлов, пропилен при 200°С полимеризуется значительно быстрее этилена [150]. Возможно, что на цеолитах с катионами переходных металлов полимеризация протекает по иному механизму. [c.75]


    Переходные металлы образуют многочисленную и интересную группу соединений с окисью углерода и некоторыми другими нейтральными молекулами. Первым из веществ этого типа был получен карбонил никеля [c.172]

    Карбонил хрома Сг(СО)6 диамагнитен [23, 32], как и все ка бонилы металлов переходных групп. [c.162]

    Присоединение литийорганических соединений к карбони лам переходных металлов обычно протекает согласно следующей схеме  [c.101]

    У переходных металлов с нечетными атомными номерами в мономерных соединениях не может быть достигнут ожидаемый ЭАН. Молекула карбонила этих элементов всегда содержит больше одного атома металла и имеет связь металл — металл, которая осуществляется электронами, принадлежащими каждому атому металла Мпг(СО)го, Со2(СО)в. Известны также другие полиядерные карбонилы металлов. На рис. 27 приведены структуры некоторых карбонилов. В 1959 г. был получен У(СО)б — твердое соединение черного цвета, обладающее парамагнитными свойствами, разлагающееся при 70". Оно является единственным мономерным карбонилом, не подчиняющимся правилу ЭАН. Соединение легко восстанавливается до [c.118]

    Активный компонент — переходный металл — вводят в цеолит либо в ионной форме при обмене или пропитке, либо в виде летучего соединения (например, карбонила), либо путем соосаждения в процессе кристаллизации цеолита. Очевидно, что диаметр каналов цеолита накладывает довольно жесткие ограничения на размер ионов или молекул, в состав которых входит активный компонент. [c.54]

    Самым простым методом получения простых карбонилов является взаимодействие окиси углерода со свободным металлом— метод, с помощью которого Монд [209] в 1888 г. впервые получил карбонил никеля и который в 1891 г. [210] был распространен на железо, а в 1906 г. — на кобальт [208]. Другие переходные металлы непосредственно с окисью углерода, по-видимому, не реагируют , хотя их соединения и могут вступать в такого рода реакции. [c.552]

    Недавно была открыта способность солей переходных металлов окислять и восстанавливать свободные радикалы [27, 80, 81]. При окислении аллильных радикалов комплексами солей одновалентной меди образуется смесь того же состава, что и получаемая в результате карбоний-ионных реакций (следовательно, промежуточными формами являются карбоний-ионы) [c.304]

    Карбонильные соед. для Pt значительно менее характерны, чем для большинства др. переходных металлов. Чистый карбонил Pt( O)4 не получен. Для Pt(0) известны в оси. смешанные карбонилфосфиновые комплексы типа [Pt( O) (РРЬз)4 ] или кластерные карбонилы разных типов, напр. [Pt( O)2], для Pt(II)-комплексы типов [Pt( O)2X2], [Pt( O)X2]2, [Pt( O)L2X]+ и [Pt( 0)X3]-. Хим. св-ва этих соед. мало изучены, для них характерны взаимные переходы при действии фосфинов, СО или при нагревании. [c.569]


    Наиболее общий метод синтеза моно-я-циклопентадиенильных соединений переходных металлов заключается в действии циклопентадиенид-аниона на соедине.ние переходного металла (галогенид, карбонил, карбонилгалогенид или другой комплексный галогенид). Из циклопентадиенидов наиболее часто употребляется СбНвКа, значительно реже используются СвНаК и [c.66]

    Комплексы переходных металлов с органическими лигандами используют как реагенты, промежуточные продукты и катализаторы различных химических процессов. Например, карбонил марганца не ядовит и в 2 раза превосходит по антидетонационньш качествам тетраэтилсвинец при его добавке к бензину. Разлагая пары карбонилов на исходные компоненты, можно наносить метал, шче-ские покрытия на стекло, керамику и пластмассу и в самых труднодоступных местах изделия. [c.601]

    Значение теории цепных процессов для судеб химической технологии трудно переоценить. С этой теорией тесно связано развитие и таких разделов химической технологии, в основе которых лежат процессы пирогепетнческого разложения веществ, теплового взрыва, радиационной химии, взрыва конденсированных взрывчатых веществ, термического крекинга нефтей, алкилирования, карбони-лирования углеводородов, гидро- и дегидрогенизации органических соединений, процессы горения в самом широком смысле, в том числе процессы, самораспространяющегося высокотемпературного синтеза (СВС), продуктами которого являются карбиды, силициды, бориды и т. п. соединения переходных металлов. [c.150]

    Гидроформилирование [435] олефинов проводят действием моноксида углерода и водорода в присутствии катализатора, обычно карбонила кобальта, но это может быть и родиевый комплекс 436], например гидридокарбонилтрнс (трифенилфосфин) родий, или другое соединение переходного металла.В промышленности эта реакция называется оксо-синтезом, но ее можно провести и в лабораторных условиях в обычном аппарате для гидрирования. Субстраты по реакционной способности можно расположить в следующем порядке терминальные олефины с нормальной цепью>внутренние олефины с нормальной цепью> олефины с разветвленной цепью. Из сопряженных диенов получаются диальдегиды при катализе соединениями родия [437], но в присутствии карбонила кобальта образуются насыщенные моноальдегиды (вторая двойная связь восстанавливается). В молекуле субстрата могут присутствовать различные функциональные группы, например ОН, СНО, OOR, N, однако галогены, как правило, мешают реакции. Гидроформилирование тройных связей происходит очень медленно, и известно лишь небольшое число примеров таких реакций [438]. Побочно протекают альдольная конденсация (реакция 16-40), образование ацеталя, реакция Тищенко (т. 4, реакция 19-71) и полимеризация. Сообщалось о стереоселектпвном син-присоединении (см., например, [439]). С помощью хиральных катализаторов проведено асимметрическое гидроформилирование [440]. [c.211]

    Карбонилирование непредельных углеводородов, спиртов, органических галогенидов и других субстратов, катализируемое переходными металлами, их солями и органическими комплексами, широко применяется для синтеза новых карбонил-, карбоксил- и алкоксикарбонилсодержащих соединений, в том числе создания или модификации гетероциклических соединений [1-6]. Однако в цитированных книгах и обзорах практически нет сведений о синтезе гетероциклов при карбонилировании ацетиленовых соединений, т.к. они появились, в основном, в последние 20 лет. Эти данные и отражены в настоящем обзоре. [c.63]

    Окислительное сочетание карбанионов, генерируемых из нитро-, карбонил-, кар-боксилсодержагцих соединений под действием таких окислителей, как галогены, ионы переходных металлов (Ее " , Си " ), позволяет формировать новые углерод-углеродные связи между достаточно сложными по структуре органическими фрагментами и получать соединения, трудно доступные другими методами. Однако применение в качестве окислителей галогенов (чаще всего йода) и солей переходных металлов ограничено с одной стороны большим расходом дорогостоящих реагентов, а с другой - необходимостью создания гомофазных условий для эффективного осуществления реакции путем подбора растворителей или подходящих противоионов в солях переходных металлов. [c.11]

    Комплексы переходных металлов наряду с ферроценовыми производными представляют, пожалуй, наибольшие возможности для варьирования органического лиганда. Самым простым способом получения их является нагревание соответствующего карбонила металла с ароматическим соединением. Оптимальная температура таких реакций (идущих с отщеплением СО-групп) равна 120—150 °С, поэтому необходимо использовать соответственно высококипящие органические растворители. Лучшими оказываются такие донорные растворители, как 2-метоксиэтиловый эфир, ди-н-бутиловый эфир, диоксан и тетрагидрофуран, а также очень часто и их смеси. Для получения термически неустойчивых соединений, в первую очередь соединений Мо и W, или комплексов с очень реакционноспособными ароматическими лигандами следует применять реакцию обмена лигандов в замещенных металлкарбоиилах МЬз(СО)з, где L — донорный лигаид со слабой обратной связью. Реакции замещения L протекают в таком случае гораздо быстрее, чем замена СО-групп. Обмен лигандов можно также значительно ускорить добавкой кислот Льюиса, которые образуют с отщепляющимся лигандом прочный аддукт. Для этих трех методов получения комплексов типа М(т1-ароматический лиганд) (СО) з далее будет дано лишь по одному примеру. Полный обзор литературы по этим комплексам для М = Сг можно найти в книге [1]. Кроме того, опубликованы подробные обзорные статьи [2—4] о получении и химических свойствах этих металлоорганических соединений. [c.1972]


    Катализируемое переходными металлами карбонилирование первичных и вторичных аминов до формамидов [схема (6.94)] известно уже давно, однако эти реакции обычно идут в жестких условиях (200°С, 300 атм) [84]. Использование в качестве катализатора хлорида меди(1) позволяет проводить карбонили- рование вторичных аминов при несколько более мягких условиях (140°С, 80 атм) [85]. Было обнаружено, что комплексы рутения, например [Киз(С0)1г] катализируют эту реакцию при атмосферном давлении [86]. При 75°С через 50 ч карбонилирование обычно проходит на 40—50%, так что эту реакцию действительно можно рассматривать как практический, хотя и медленный, путь получения дизамещенных формамидов. [c.224]

    Гидрид карбонила кобальта - белое кристаллическое вещество, которое плавится при температуре 26 °С. Выще этой температуры он довольно быстро разлагается и чрезвычайно токсичен. Следовательно, основной недостаток гидридов карбонильных комплексов переходных металлов (в том числе кобальта) — их низкая стабильность. Гидрид карбонила кобальта в растворе сохраняется при температуре 200 °С (режим гидроформилирования) лищь при давлении 10 МПа. При более низком парциальном давлении СО он разлагается. [c.376]

    Если рассматривать обратимое образование ионов карбония как окислительновосстановительный процесс, то каталитическая активность окислов элементов группы хрома и металлов VIII группы представляется более естественной, чем активность кислотных реагентов. Известно, например, что окислы хрома способны выступать в роли не только гомолитических, но и гетеролитических окислителей, т. е. акцепторов гидридных ионов [79]. Кроме того, как отмечалось выше, отрыв гидридных ионов не является единственным способом превращения алканов в карбокатионы к тому же результату может привести отрыв атома водорода группы С—И и потеря одного электрона в следующей стадии. Подобные процессы легко реализуются на переходных металлах, тогда как отрыв гидридного иона требует высокой кислотной силы ионных катализаторов. Действительно, данные об изотопном обмене водорода насыщенных углеводородов с газообразным дейтерием на поверхности металлов (например, на платине или никеле [13]) свидетельствуют о легкости диссоциативной адсорбции алканов с образованием на поверхности катализатора адсорбированных атомов водорода и алкильных радикалов. [c.22]

    Наиболее обычными фторидами галогенов являются трехфтористый хлор (температура кипения 12°С), трехфтористый бром (температура кипения 128 °С) и пятифтористый иод (температура кипения 98 °С). Действие трехфтористого хлора в значительной степени напоминает действие элементарного фтора. Пятифтористый иод —мягкий фторирующий агент, находящий лишь небольшое применение в химии переходных металлов сообщалось, однако, что он превращает карбонил вольфрама в гексафторид, а смеси карбонила с иодистым калием — в комплексы KaWPg и KaWFs характер продукта зависит от соотно шения исходных веществ  [c.88]

    Гидриды переходных металлов, проявляющие активность в реакции переноса водорода и катализе, нЗ пример 1—9, обычно содержат такие стабилизующие лиганды, как фосфин, карбонил, цианид или л-цикло-пентадиенил, способные к ретродативному л-связы-ванию. [c.110]

    В последнее десятилетие разгорелся оживленный спор о структуре норборнильного катиона. Б настоящее время возможно непосредственное изучение его строения с помощью инфракрасного спектра и спектров комбинационного рассеяния, что снижает ценность обширных работ прошлых лет. Однако до сих пор все еще существуют две точки зрения относительно структуры норборнильного катиона (формулы IV и V). Структуру V принято называть неклассической из-за вклада структуры с я-связями (VI). Однако представляется сомнительной роль структур с я-связями для ионов карбония. В хорошо известных я-комплексах между Ag+ (а также ионами других переходных металлов) и двойными углерод-углеродньши связями, по-видимому, имеются две незаполненные орбитали под углом 90—120 друг к другу, одновременно перекрывающиеся с заполненными р-орбиталями обоих атомов углерода двойной связи. Этому условию удовлетворяют незаполненные -орбитали атомов переходных металлов, которые имеют относительно низкие энергетические уровни. Подобные орбитали [c.405]

    Для получения НаСНОН и НзСОН [276] могут быть использованы гидролиз и окислительный гидролиз. Гидроформилирование имеет сходство с реакцией Коха, если рассматривать комплекс алкена с ионом переходного металла как своего рода ион карбония. Недавно опубликована работа [277], посвященная реакции гидроформилирования. [c.436]

    Олефиновые и ацетиленовые соединения. Эти соединения, подобно обсуждаемым в предыдуще.м параграфе, являются типичнылш для переходных металлов. Они образуются также за счет перекрывания я-электронной плотности углеводорода с -орбиталями металла. Олефины разных типов и ацетилены люжно непосредственно связать с атомом металла. Кроме того, ацетилены могут реагировать с карбонила.ми металлов, приче.м ацетиленовая группа видоизменяется, реагируя, например, с окисью углерода и образуя хн-ноновые, циклопеитадиеноновые или лактонные группировки, которые дают связи с ато. .юм металла. Некоторые карбанионы или карбониевые ионы, образованные из олефинов, например аллил-ион [c.148]

    Устойчивость в ряду однотипных соединений ЬпМК, как правило, возрастает при увеличении атомного номера металла и при повышении электроотрнцательности алкильного или арильного заместителя Н. Стабилизирующее действие некоторых лигандов объясняется тем, что при введении их в молекуле металлорганического соединения возникают стерические препятствия для атаки реагентов по связи М—р. Особой устойчивостью, не только термической, но и к реакциям расщепления по связи. металл — углерод, отличаются фторалкильные производные переходных металлов. Так, алкилкар-бонилы железа и кобальта неустойчивы при комнатной температуре, тогда как перфторалкильные производные типа (СО)зСо(Ср2)гСо(СО)з или соединение 28.XXX, образующиеся при взаимодействии карбонила металла с С2р4, совершенно стабильны. [c.191]

    У Гмелина [6] собран большой фактический материал по изучению гидридов, но изложен он без попытки критического обобщения книга К. Смиттельса [7] охватывает работы, опубликованные только до 1935 г. в монографии Смита [8] преимущественно и во втором издании книги Хансена [9] исключительно внимание уделено тем гидридным системам, для которых можно построить диаграмму состояния много новых данных о химии гидридов находится в последнем издании книги Б. В. Некрасова [10], в работах С. Дэшмана [11], Р. Гибба [12], М. Г. Славинского [13], Г. В. Самсонова и Я. С. Уманского [14] и др. Но во всех этих трудах, может быть за исключением крайне сжато написанной монографии Д. Херда [15], совершенно не уделяется внимания получению гидридов другими методами, кроме непосредственного гидрирования молекулярным водородом, и полностью отсутствуют данные изучения производных гидридов переходных металлов типа двойных боро- и алюмогидридов, смешанных карбонил-гидридов, комплексных соединений, содержащих гидридный водород и др. Синтез же этих соединений в настоящее время должен рассматриваться как важнейший этап изучения химической природы не только гидридов, но и фаз переменного состава вообще. [c.5]

    Получен ряд комплексов циклобутадиена с переходными металлами ЭТО тем более следует отметить, что сам углеводород никогда не был выделен. Циклобутадиен должен быть неустойчивой системой, поскольку число я-электронов в нем (четыре) энергетически невыгодно (1, разд. 9-6,Д). Эксперимент подтверждает это предположение, так как циклобутадиен кратковременно существует как. в высшей степени неустойчивое промежуточное соединение в реакциях, Которые логически должны были бы привести к циклобутадйе-ну, но вместо этого дают димерный продукт. Так, тетраметилдихлор-циклобутен (ХП) был подвергнут дехлорированию действием амальгамы лития в эфире, и выделенный углеводород оказался димером тетраметилциклобутадиена (ХП1). Однако в присутствии карбонила никеля эта реакция приводит к образованию комплекса хлористого [c.233]

    Адгезия фторсодержащих полимеров (в особенности, фторхлор-содержащих) к различным материалам, включая металлы, значительно улучшается, если лист полимера предварительно погрузить на 10—60 мин в раствор алюмннийалкила в соответствующем инертном растворителе 5 . С помощью реакции между карбонил-хлоридом платины и алюминийалкилом можно нанести на поверхность металлическую платину Карбонилы переходных металлов, которые трудно приготовить обычным способом, можно получить путем восстановления соответствующей соли переходного металла с помощью алкилалюминия в присутствии окиси углерода [c.82]


Смотреть страницы где упоминается термин Металл переходные, карбонилы: [c.38]    [c.235]    [c.244]    [c.248]    [c.326]    [c.2208]    [c.248]    [c.281]    [c.16]    [c.229]    [c.222]    [c.244]    [c.248]    [c.547]    [c.553]    [c.567]    [c.305]    [c.191]    [c.158]    [c.117]    [c.250]    [c.154]   
Валентность и строение молекул (1979) -- [ c.282 , c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Бирюков, Ю. Т. Стручков Структурная химия комплексов переходных металлов с карбонильными лигандами. Часть I. Одноядерные и многоядерные карбонилы и их производные без связей металл—металл

Карбонилы и цианиды переходных металлов

Карбонилы металлов

Карбонилы переходных металлов IV группы

Металлические производные карбонилов металлов, у которых связь металл—металл осуществляется между двумя (или несколькими) одинаковыми переходными металлами

Металлы переходные

Переходные карбонилы

Переходные металлы карбонил гидриды

Производные карбонилов металлов, у которых связь металл— , металл осуществляется между двумя (или несколькими) различными переходными металлами

Производные карбонилов металлов, у которых связь металл— металл осуществляется между переходными и непереходными металлами

Структура и устойчивость карбонилов и других ковалентных комплексов переходных металлов



© 2025 chem21.info Реклама на сайте