Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

соль чистота

    К раствору иодата натрия, полученному из 100 г иода, постепенно прибавляют 40 г едкого натра . После разбавления до 1200 мл раствор нагревают до кипения и при энергичном перемешивании механической мешалкой небольшими порциями добавляют 213 г персульфата калия, а затем 170 г едкого натра. Кипячение продолжают 15 м ин. Раствор охлаждают до 40°, фильтруют через фильтр из пористого стекла (или декантируют) осадок промывают холодной водой. При охлаждении ниже 40° выкристаллизовывается большое количество сульфата. Осадок даже после многочисленных промываний обычно дает реакцию на сульфат. После сушки при 110° получают 223—227 г перйодата, в котором содержится 94—97% чистой соли (чистота определяется по содержанию ЛгО ). [c.164]


    Для компонентов, присутствующих в стандартах в больших количествах, необходимо использовать спектрально чистые соли. Чистота соли, из которой берется определяемый элемент, не имеет значения, если обеспечивается достаточная концентрация этого элемента в конечном стандарте. Например, если готовят стандартный раствор, содержащий 5 мкг/мл натрия и 500 мкг/мл кальция, и натрий является определяемым элементом, то можно не обращать внимания на следовые загрязнения в натриевой соли. Но малейшие следы натрия в соли кальция сделают стандартный раствор непригодным. [c.197]

    Перекись водорода смешивается в любых отношениях с водой, этиловым и метиловым спиртами. Одним из недостатков концентрированной перекиси водорода является высокая (—0,89° С), температура замерзания, что затрудняет ее эксплуатацию в зимних условиях. Маловодная перекись водорода термически нестабильна и очень чувствительна к различного рода загрязнениям. Попадание в перекись различных примесей (пыли, ржавчины, солей тяжелых металлов и др.) приводит к резкому увеличению скорости разложения перекиси водорода и ее сильному разогреву. Лучшей гарантией стабильности перекиси водорода является обеспечение ее чистоты как при производстве, так и в процессе хранения, транспортировки и перекачек. [c.126]

    В процессе сборки пакетов особое внимание уделяют обеспечению точности укладки элементов, строгой их фиксации и плотному прилеганию спаиваемых поверхностей. Зазор между спаиваемыми поверхностями не должен превышать 0,2 мм. Во избежание спаивания поверхностей пакета со сборочно-фиксирующим приспособлением в местах их соприкосновения прокладывают фольгу из нихрома, из которого изготовляют также все сборочно-фиксирующие приспособления и тигель ванны для обеспечения ее чистоты. Пайку пакетов производят двумя методами спеканием в печи и погружением в соляную ванну. Метод спекания в печи проще, но паяные соединения получаются более низкого качества, чем при пайке в расплавленных солях. [c.195]

    Ультрафильтрация сырого сахарного сока дает чистый свободный от коллоидов фильтрат, из которого может быть прямо проведена кристаллизация сахарозы. При этом обеспечиваются высокий выход и высокая чистота продукта. Известны такие мембраны, задерживающие сахарозу, которые можно использовать для концентрирования раствора сахара и снижения концентрации инвертированного сахара и солей. Это позволяет не только снизить нагрузку на систему выпаривания и себестоимость процесса кристаллизации, но также повысить выход кристаллов и снизить потери с осадком. Так, установлено [195], что стоимость 1 л кленового сиропа, получаемого концентрированием (в 30— 40 раз) кленового сока кипячением при атмосферном давлении, может быть снижена на 54%, если предварительно из кленового сока удалить 75% воды с помощью обратного осмоса. [c.291]


    Преимуществом перлита перед диатомитом является его относительная чистота, поскольку иногда существует опасность, что диатомит может загрязнить фильтруемую жидкость растворимыми солями или коллоидной глиной. [c.347]

    Электролиз отбросной соляной кислоты позволяет получить дешевый хлор достаточной чистоты (99,5—99,7%), при этом стоимость его определяется, в основном, затратой электроэнергии, которая значительно ниже, чем при электролизе поваренной соли и составляет 1800— 2000 em- [c.40]

    Катализаторы приготовляют совместным и раздельным осаждением компонентов с последующей их промывкой, смешением и термической активацией. Можно вначале приготовить носитель, например а-АЬОз, а затем ввести в пего активные компоненты пропиткой растворами соответствующих солей. Никель в состав катализатора любым из указанных способов целесообразно вводить из раствора нитрата никеля, а не из раствора сульфата, так как в процессе термической активации он разлагается значительно легче с образованием закиси никеля [224]. Раздельное осаждение компонентов катализатора способствует улучшению его качества, так как при этом достигается более высокая чистота каждого из компонентов [225]. На свойства катализаторов (насыпная плотность, пористость, механическую прочность) существенно влияют условия осаждения компонентов pH среды, скорость слива растворов, температура осаждения. [c.88]

    Чистота полученной соли (% КС1) без промывки  [c.476]

    Горячие газы охлаждаются в высокотемпературном теплообменнике, куда вводится предварительно охлажденный аммиак, дальнейшее охлаждение газа до 140°С происходит в трубчатом холодильнике. Сульфат аммония осаждается на электрофильтре при напряжении 59—63 кВ, выход соли 97,5%. Полная рекуперация составляет 90%, чистота сульфата аммония достигает 99,2%, что практически соответствует марке ч. д. а. Пилотная установка эксплуатировалась в непрерывном режиме в течение многих месяцев. Можно предположить, что одним из достоинств этого процесса является то, что продукт не коррозионно-активен, поэтому частично исключены проблемы коррозии, с которыми сталкиваются в производстве серной кислоты. Чистота конечного продукта опровергает предположение, высказанное ранее Джовичем [408], что примеси в газовом потоке и, в частности, смолистые вещества будут отравлять катализатор, работающий при температуре ниже 300°С, а также загрязнять продукт. [c.195]

    Оптимальные условия накопления биомассы ограничиваются прежде всего определенной температурой, значением pH среды, количеством и скоростью поступления питательных веществ, кислорода воздуха и др. Нормальные алканы используются микроорганизмами в качестве питания. Они вместе с аммиаком и минеральными солями превращаются в продукты обмена, представляющие биомассу, состоящую в основном из протеинов. В промышленном процессе производства белка важной ступенью является выделение продуктов ферментации и заключительная обработка полученных клеток микроорганизмов. Чистота углеводородного сырья оказывает существенное влияние на экономику процесса. [c.206]

    Однозамещенный фосфорнокислый калий перекриста лизовыва ется из продажной соли. Чистоту полученного препарата проверяют на хлориды и сульфаты, которых не должно содержаться потери при прокаливании должны составлять 13,23%. [c.25]

    Форма кристаллов бета-соли имеет существенное значение в производстве 2-нафтола, так как от этого зависит скорость отфильтровывания соли, чистота отмывки ее от маточного раствора, содержание в ней влапи, а также возможность механизации транспорта отфилитрованной соли. [c.127]

    Для Са- и Мд-солей диметилдитиокарбаминовой кислоты точность разработанного метода была проверена на искусственных смесях, близких по составу к техническим образцам. Смеси были приготовлены из псрекристаллизованных солей, чистота которых контролировалась по содержанию сероуглерода и металла известными методами 1,11 тетраме-тилтиурамдисульфида (ТМТД) и диметиламина (ДМА) в соотношении 10 1 1 соответственно. Результаты анализа, обработанные методом математической статистики, представлены в таблице. [c.162]

    В период разработки процесса получения чистого бутадиена для производства синтетического каучука поглощение его водными растворами аммиачномедпых солея стало одним из промышленных методов [8]. Основная методика заключалась в абсорбции бутадиена раствором основной медной соли с pH от 9,5 до 12,5 с последующим выделением бутадиена нагреванием раствора. Бутилены также поглощаются раствором, но они выделяются из него при более низкой температуре, после чего можно получить бутадиен чистотой в 98%. Тот н е общий метод применялся для очистки изопрена [17]. С нинериленом водный кислый раствор полухлористой меди и хлористого аммония образует комплекс, который при нагревании выделяет нри 43—48° г ис-форму, а при 65° — почти чистую транс-форму [3, 24]. Изопрен выделяется из комплекса с полухлористой медью при нагревании от 35 до 65° [211. Наиболее раннее применение хлористой меди для выделения бутадиена описано Филером в 1931 г. [4]. [c.388]


    С Одной из важнейших характеристик веш,ества является его плотность, обычно обозначаемая греческой буквой р . Всякие примеси к какому-либо веществу обязательно изменяют его плотность. Поэтому по величине плотности можно судить о чистоте и качестве взятого вещества. В химических лабораториях особенно часто определяют плотность растворов и других жидкостей. Определив плотность, можно узнать концентрацию вещества в данном растворе. Например, концентрацию растворов солей или щелочей можно определить, узнав их плбтность. Имеются таблицы, в которых указано, какой плотности соответствует определенное содержание вещества. Это же относится и к растворам многих кислот. Так, в таблице можно найти, что при плотности серной кислоты, равной 1,835 г/сл ,в 100 г ее содержится 95,72 г чистой серной кислоты. Или раствор едкого натра плотностью 1,430 г см содержит 40% вес. едкого натра, т. е. в 100 г этого раствора будет содержаться 40 г твердого едкого натра. [c.161]

    Получение пленок в процессе ионного отложения — один из наиболее простых методов получения тонкостенных изделий из латекса. Этот метод широко используется в промышленности резинотехнических изделий. Ионное отложение [76, 77] заключается в последовательном погружении формы в загущенный раствор электролита (соли кальция, маг41ия или цинка) и в латексную смесь. По мере астабилизации латекса вокруг формы образуется каучуковый гель. Для полноты коалесценции глобул, определяющей прочность изделий, их подвергают синерезису, в процессе которого происходит выделение части серума. Процесс синерезиса несколько ускоряется с повышением температуры. Проведение синерезиса в электрическом поле (электроосмос) [78] позволяет получить пленки большей степени чистоты. [c.608]

    Хотя, как было показано выше, вторичные бромиды в условиях МФК-замещения дают главным образом алкены, более активные мезилаты превращаются во вторичные галогениды с относительно хорошими выходами. Из оптически активного 2-октилмезилата были получены оптически активные хлорид (выход 83%, оптическая, чистота 89%) и бромид (выход 78%, оптическая чистота 82%). Реакцию проводили в присутствии 5 мол.% аликвата 336 или трибутилгексадециламмонийброми-да при 100 °С в течение 1,5 или 0,5 ч соответственно. Для уменьшения рацемизации в результате повторного обмена при получении фторида, который реагирует слишком медленно, использовали эквимолярное количество неорганической соли. [c.113]

    Данные об алкилировании А и сходных с ним соединений в присутствии хиральных катализаторов см. в разд. 3.1.5. Соединение А можно проалкилировать в две стадии — сначала провести реакцию А с гидроксидом натрия, а затем алкилировать в присутствии четвертичной аммониевой соли, при этом образуется 84% С-алкилированного продукта В [385]. При алкилировании ацетоуксусного эфира 2-октилтозилатом или 2-октилиоди-дом наблюдаются инверсия и частичная рацемизация, при этом энантиомерная чистота продукта 0-алкилирования была выше, чем у продукта С-алкилирования [1418]. В других работах со-обш,ается о С-алкилировании анилида ацетоуксусной кислоты [1561] и об образовании пятичленного цикла при реакции между ацетоуксусный эфиром и 1,2,4,5-тетрабромметилбензолом в условиях МФК [1442.  [c.207]

    Интенсификация эксплуатации печей достигается не только улучшением сжигания топлива, но и повышением передачи тепла сырью, проходящему по трубчатым змеевикам. Коэффициент теплопередачи существенно зависит от чистоты наружной и внутренней поверхностей змеевика печи, а также от скорости движения потоков сырья. В процессе работы печи наружная поверхность труб покрывается окалиной, налетами сажи и золы, а внутренняя — отложениями солей и кокса. Своевременная тщательная очистка поверхнос1ей трубчатого змеевика — очень [c.272]

    Исследована зависимость удельного объемного сопротивления осадков ряда неорганических солей, образующихся при разделении их водных суспензий на фильтре, от концентрации твердых частиц в суспензии [206]. Использованы сульфаты кальция, бария и стронция, карбонат кальция, фторид лития и фосфат магния (МдНР04) реактивной степени чистоты, что сводит влияние примесей на удельное сопротивление осадка до минимума размер [c.188]

    Хорошее разделение получили Ригамонти и Спаккамела [507) при экстракции изоамиловым спиртом солей кислот уксусной и трехвалентных цианистой этих металлов из водного раствора. Применяя 7-ступенчатую фракционированную экстракцию, они получили 90%-ное разделение. По расчетам при применении 19 ступеней надо ожидать чистоту продуктов 99,9%. Шарп и Вилькинсон [5081 экстрагировали гексоном кобальт из водного раствора трехвалентных цианистых солей кобальта и никеля. [c.457]

    Большое внимание уделяют комбинированным аииаратам многофункционального назначения в производстве химических реактивов и особо чистых химических вептеств. Так как обработка проводится в одном аппарате, гарантируется высокая чистота производимого продукта. Разработаны комбинированные технологические аппараты, в которых совмещены процессы фильтрования суспензии и сушки осадка. Одна из конструкций предназначена для кристаллических продуктов, в основном, солей (нитратов, хлоридов, сульфатов и др.) с кристаллами размером более 60 мкм, другая — для высокодисперсных продуктов— оксидов, гидроксидов, карбонатов и других — с размерами частиц менее 60 мкм. Аппараты обоих типов прошли испы- [c.26]

    В настоящее время каустическую соду (МаОН)ихлор в промышленности получают электролизом поваренной соли в электролитических ваннах с ртутным катодом (рис. УПМб) или с диафрагмой (рис. VIII-17) 1[107]. В США 66% продукции получают диафрагменным сгюсобом. В СССР наибольшее применение нашел способ электролиза с ртутным катодом, так как получаемый продукт отличается высокой степенью чистоты. Кро Ме того, данный способ более экономичен в сравнении с диафрагменным. Существенным недостатком способа является образование токсичных ртутьсодержащих отходов. Образовавшуюся амальгаму натрия разлагают на специальных насадках из соединений различных металлов (циркония, вольфрама), а также графита на едкий натр и водород, а ртуть вновь возвращается в камеру электролиза (см. рис. УПМб). [c.252]

    Если требуется деминерализовать очень жесткую воду, то необходима система последовательно соединенных реакторов, число которых зависит от степени минерализации воды и ее чистоты. Теоретически вода, которая не содержала бы ни одного вида солей, не может быть получена даже прн использовании бесчисленного множества пар реакторов с катио-по-аппоновым обменом. Такая Рис. УШ-Ю. Схема комбинирован- система может быть осущест-ного реактора, влена в некотором приближе- [c.342]

    Сорта ГОО, Г0,Г1, Г2 н ГЗ —для получения алюминия Г2 и ГЗ — для получения абразивных матзриалов Г4 — для изготовления высококачественных огнеупоров. Все сорта — для ИЗГ0Т0-, вления чистых алюминиевых солей, электрокорун-та высокой чистоты [c.175]

    Процесс получения терефталевой кислоты высокой степени чистоты из калиевых солей фталевой, изофталевой и бензойной кислот протекает по схеме  [c.79]

    Изомеризация кислородсодержащих соединений. В 1963—65 гг. фирмой Henkel (ФРГ) разработан технологический процесс получения терефталевой кислоты высокой степени чистоты из калиевых солей фталевой или изофталевой кислот. Схема процесса изображена на рис. 3.16. Высушенная в аппарате I калиевая соль, не содержащая кристаллизационной воды, пропускается через реактор 2 в атмосфере Oj при 400—430 °С под давлением 0,5—2,0 МПа в присутствии измельченного кадмийсодержащего катализатора, взятого в количестве нескольких мольных процентов. В этих условиях степень превращения исходного сырья составляет почти 100%, выход дикалийтерефталата достигает 95—98%. [c.94]

    Процесс окисления -ксилола проводят в среде монокарбоно-вых кислот в присутствии катализатора — соли переходного металла (Со и Мп) и промотора — бромсодержащей добавки. Окисление п-ксилола проводят в среде уксусной кислоты при 195— 205 °С и давлении до 1,5 МПа. Ко (ичество вводимых промотора и катализатора — 0,45% (масс.). Вьход терефталевой кислоты достигает 94—95%, а ее чистота — 99%. [c.288]

    Методы спектрофотометрического определения производных л-феннлендиамннов, основанные на измерении оптической плотности окрашенных продуктов их окисления — солей Вюрстера [172], обладая высокой чувствительностью, недостаточно точны и избирательны, так как при этом определяются и другие амины, которые. могут присутствовать в топливе. Более точным и объективным, по мнению некоторых исследователей [173], является метод неводного потенциометрического титрования, который был ранее предложен [174] для определения К,К -двухзамещенных-п-фе-нилендиам-инов в резине. Присадку экстрагируют хлорной кислотой в среде ледяной уксусной кислоты. В работе [173] этот метод был использован для определения чистоты /г-фенилендиами-нов. [c.198]

    Азотистые основания очищались по методике [16], акридин — перекристаллизацией из этилового спирта, затем возгонкой, индол — возгонкой, карбазол — хроматографической очисткой на окиси алюминия и возгонкой. Тетрахлориды титана и олова марки безводные также подвергались очистке в токе инертного газа. Были приготовлены 0,1- и 0,01-молярные растворы азоторганических соединений в декане и в очищенном дизельном топливе. Тетрахлориды титана и олова концентрации I и 0,1-молярные были-приготовлены в гептане. Гептан, используемый в Качестве растворителя солей металлов, подвергался очигтке 1-молярным раствором четыреххлористого титана, затем перегонкой над гидроокисью калия. Чистота растворителей контролировалась УФ-спектрами. Исследование проводили в боксе в атмосфере очищенного от кислорода и влаги аргона при комнатной температуре и атмосферном давлении. 100 мл азотистых соединений конЦейТраций 0,1- или  [c.117]

    Окисление толуола в среде углеводорода [54] ведут воздухом при 0,196—0,784 МПа и 150—170 °С в присутствии солей кобальта или марганца (0,02—0,10%)- Степень превращения толуола составляет 30—50%. На стадии окисления из 1 т толуола получают 1,23 т бензойной кислоты (32% от оксидата) и 0,066 т побочных кислородсодержащих продуктов, главным образом бёнз-адьдегнд (1,4% от оксмдата), бензиловый спирт (0,18%), бензил-бензоат, бензилформиат к бензилацетат. При фракционировании оксидата в вакууме последовательно выделяются толуол, побочные продукты (спирт и альдегид, возвращаемые на окисление), бензойная кислота (степень чистоты 99,85%) и кубовый остаток (направляемый на сжигание). Суммарный выход с учетом возврата побочных продуктов составляет 93—94% от теоретического. [c.69]

    Теоретически установлено, что нефть в источнике залегания может образовываться из полярных компонентов, содержащих азот, серу, кислород, металлы, а также углеводороды с широким диапазоном изменения молекулярных масс, включая ароматические, нафтеновые, парафиновые вещества. Во время миграции нефти те компоненты, которые являются более полярными или более поляризующими, адсорбируются в первую очередь. Например, компоненты, содержащие аминовые нитрогены, порфирины, могут вести себя как катионы и адсорбироваться ria глинах. Это — одна из-причин формирования весьма неровных границ раздела нефть—вода, особенно в породах, содержащих небольшое количество глин. Концентрация активных компонентов вблизи первоначального водонефтяного контакта приводит к образованию более низких поверхностных натяжений между нефтью и водой, чем в точках, более отдаленных от водонефтяного раздела. Возможно также, что вода вблизи области залегания нефти может иметь-растворенные органические компоненты, такие, как нафтеновые-кислоты или их соли, которые в условиях неоднородного коллектора могут изменить поверхностное натяжение между нефтью-и водой в ту или иную сторону. Кроме того, на характеристику смачиваемости коллекторов заметное влияние оказывает их неоднородность по минералогическому составу, степень шероховатости , чистоты отдельных минеральных зерен, их окатанность, структура кристаллической решетки. Одни минеральные частицы обладают лучшей смачиваемостью, другие— худшей в зависимости от их химического состава и строения кристаллической решетки. [c.207]

    Из всех искусственно получаемых солей сероводородной кислоты технический сульфид натрия (не менее 63—65%-ной чистоты) нашел наибольшее применение. Его используют как восстановитель для органических нитросоедннений, при дублении кож, в флотационных процессах, в частности прн флотации цинковой обманки и руд, содержащих железо, цинк и свинец. В химической промышленности Г а, 5 является полупродуктом для получения ЫзгСО, и ЫаОИ. [c.42]


Смотреть страницы где упоминается термин соль чистота: [c.184]    [c.77]    [c.162]    [c.493]    [c.105]    [c.218]    [c.426]    [c.322]    [c.96]    [c.147]    [c.89]    [c.363]    [c.193]    [c.342]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.126 ]




ПОИСК







© 2025 chem21.info Реклама на сайте