Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотнейшая структура в сплавах

    Благодаря особо мелкозернистой плотной структуре сплавов можно при заточке и доводке инструментов, оснащенных сплавом типа ОМ, достигать наименьших радиусов скругления режущих кромок. Это обеспечивает получение меньших шероховатости обработанной поверхности и отклонения размеров. [c.276]

    Пленки ржавчины, образующиеся в атмосферных условиях, могут иметь защитные свойства поэтому скорость коррозии со временем снижается (рис. 8.1). Это справедливо, хотя и в меньшей степени, для чистого железа, скорость коррозии которого относительно высока по сравнению с более устойчивыми медьсодержащими или низколегированными сталями. На этих сплавах образуются пленки с плотной структурой и хорошей адгезией, тогда как на чистом железе продукты коррозии рыхлые порошкообразные. Через некоторое время скорость коррозии достигает устойчивого значения и обычно слабо меняется в дальнейшем. Это свойственно и другим металлам, о чем свидетельствуют данные, полученные Американским обществом по испытанию материалов (табл. 8.2). Различия в скорости коррозии за 10 и 20 лет находятся в пределах ошибки эксперимента. [c.171]


    Межатомные расстояния в металлах интересны пе только са-М 1 по себе, но и как источник значений металлических радиусов, используемых при обсуждении структур сплавов. Поскольку для металлов наиболее обычно КЧ 12, принято приводить стандартный набор радиусов именно для этого координационного чпсла. В структурах металлов с идеальной плотнейшей упаковкой радиус вычисляется просто как половина расстояния от атома до любого из двенадцати равноудаленных соседей. Одпако во многих структурах имеются небольшие отклонения от идеальной гексагональной упаковки, так что расстояние до шести соседей несколько больше, чем до шести других, иаиример  [c.454]

    Рассмотрим влияние основных факторов на защитные свойства покрытий. Сравнивая коррозионную стойкость цинковых покрытий, полученных различными методами (рис. 7.19), можно заметить, что применение электрохимических покрытий предпочтительно. Их высокая защитная способность объясняется, с одной стороны, образованием более чистых в химическом отношении осадков, с другой стороны, мелкозернистой и плотной структурой. Термообработка цинковых покрытий при 400. .. 500 °С в течение 10. .. 20 мин позволяет повысить защитную способность в 2. .. 4 раза в результате образования однородного сплошного слоя железоцинкового сплава. , г Защитная способность покрытий тес- но связана с технологией их нанесения. На рис. 7.20 приведена классификация технологических факторов, оказывающих непосредственное влияние на свойства покрытий, наносимых электрохимическим методом, [c.185]

    Знание межатомных расстояний в металлах весьма существенно само по себе, но кроме того удобно иметь под рукой таблицу радиусов, Которыми можно пользоваться при рассмотрении структур сплавов. Так как в металлах наиболее часто встречается координационное число 12, то обычно составляют таблицу стандартных радиусов для этого координационного числа. Для метал,1ов с идеальными структурами, имеющими плотную упаковку, радиусы равны половине расстояния между данным атомом и его двенадцатью ближайшими соседями, находящимися на равных от него расстояниях. [c.630]

    Для получения надежной герметичности при изготовлении вакуумных систем в первую очередь применяют материалы, имеющие плотную структуру, которая обеспечивает их газонепроницаемость даже при малых толщинах (стекло, малоуглеродистая и нержавеющая сталь, алюминий, медь и различного рода сплавы). [c.30]

    В конструкциях из алюминиевых сплавов следует также учитывать, что сварные швы, выполненные аргонодуговой, роликовой или точечной сваркой, обладают пониженной коррозионной стойкостью вследствие изменения структуры сплава. Непосредственно перед точечной или роликовой электросваркой внутренние поверхности шва покрывают плотным слоем пассивирующей грунтовки. [c.100]


    Незначительные количества примесей поверхностно активных веществ способствуют получению мелкой и плотной структуры. Накапливание этих веществ в поверхностном слое основано на их способности понижать поверхностное натяжение жидкого сплава. Поэтому при образовании кристаллов поверхностно активные примеси выделяются (адсорбируются) на их поверхности и препятствуют дальнейшему росту кристаллов, благодаря чему сплав получается [c.78]

    В зависимости от режима обработки сплава могут изменяться в широких пределах величина и форма зерен сплава, а следовательно, и его коррозионная стойкость. Незначительные количества примесей поверхностно-активных веществ способствуют получению мелкой и плотной структуры и увеличению коррозионной стойкости сплава. Так действуют, например, примеси натрия и других щелочных металлов в сплавах алюминия и кремния. [c.24]

    Коррозионная стойкость свинцово-сурьмяного сплава повышается при наличии у него мелкокристаллической структуры. Образованию такой структуры способствуют быстрое охлаждение металла при литье, термическая обработка и присутствие в металле некоторых примесей. Такие примеси могут служить модификаторами (регуляторами кристаллизации). Выполняя функции центров кристаллизации, они способствуют образованию мелкокристаллического сплава. В этом случае на его поверхности образуются более плотные защитные пленки, закрывающие межкристаллитные прослойки и вызывающие пассивирование металла. Модификаторами могут быть примеси серебра, серы, фосфора и др. В производстве сплава модификатором является сера в чистом виде (0,03%) или в виде эбонита. При отливке тонких решеток для некоторых типов стартерных аккумуляторов представляет практический интерес добавление в свинцово-сурьмяный сплав небольших количеств серебра и мышьяка. [c.76]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Количество же частиц, непосредственно примыкающих к данной, определяют как координационное число. В. кристаллах, образованных сферическими частицами одинакового размера, их плотнейшая упаковка может осуществляться в виде двух энергетически равноценных структур кубической и гексагональной (рис. ИМ). Координационное число для каждой из этих структур равно 12, а сами сферы занимают 74 % полного объема кристалла. В подобных структурах кристаллизуются большинство металлов и сплавов, благородные газы, ряд соединений, молекулы которых обладают близкой к сферической симметрией, например СН4, СО2. Если частицы, образующие кристалл, не являются сферическими или имеют разные размеры, то их плотнейшая упаковка будет искажаться. При этом значение координационного числа будет меньше 12, а доля незанятого объема в кристалле будет расти. [c.66]

    Металлическое серебро и золото полностью смешиваются между собой не только в жидком, но и в кристаллическом состоянии. Твердый сплав серебра и золота состоит из одной фазы — гомогенных кристаллов, имеющих структуру плотнейшей кубической упаковки, описанной для меди в гл. 2 атомы золота и серебра занимают места в кристаллической решетке по существу беспорядочно (рис. 17.4). Фазовая диаграмма, показанная на рис. 17.7, отражает это положение. Из диаграммы следует, что добавление небольшого количества золота к чистому серебру не понижает, как обычно, температуру затвердевания сплава, г наоборот, вызывает повышение температуры кристаллизации. [c.502]

    Др. подход к систематике кристаллич. структур металлов и их сплавов основан на выявлении наиб характерных плотных и плоских (или почти плоских) сеток и последовательностей их укладки (У. Пирсон, 1972) Примерно половина всех известных структурных типов металлич и полупроводниковых соед. описываются укладкой правиль- [c.245]


    Наоборот, для получения в аморфном состоянии веществ, образующих плотнейшие упаковки, например металлов, требуются огромные скорости охлаждения (до 10 К/с). Многие металлические стекла обладают рядом замечательных свойств высокой прочностью, твердостью при высокой пластичности, высокой коррозионной стойкостью, высокой магнитной проницаемостью и т. д. Для придания им необходимых свойств и уменьшения необходимой скорости охлаждения их чаще всего изготавливают из сплавов, легированных малыми добавками элементов с малым атомным радиусом (бора, углерода, кремния, фосфора), что несколько усложняет их кристаллическую структуру и замедляет кристаллизацию. [c.301]

    В таких случаях берут среднее значение из двух расстояний. (Это пе относится к структурам цинка и кадмия, очень сильно отличающимся от плотнейших упаковок, что видно из отношения с а 1,856 и 1,885 соответственно.) Если в структуре металла координационное число оказывается меньшим, то радиус, соответствующий КЧ 12, получают другими способами, В результате сравнения межатомных расстояний во многих металлах и сплавах Гольдшмидт обнаружил, что для данного металла кажущийся атомный радиус находится в определенной зависимости от координационного числа. Получены следующие отно- [c.454]

    Аустенитная структура спЛавов обеспечивается содержанием никеля в количестве более 18%, Что создает условия для сохранения плотна упакованной решетки - у - раствора, в котором замедляются процессы деформации, благо даря чему сталь становится более жаропрочной. Углерод содержится в Сплавах в количестве до 0,45 % и обеспечивает сохранение структуры, жаропрочности и увеличивает длительную гшастич ность материма. Хром в составе аустснитной стали в количестве 17 - 27 % обеспечивает повышение сопротивлению ползучести, длительную прочность и жаропрочность. Марганец в количестве 1,5 - 2 % также является аусте-нитообраз тащим элементом и увеличивает жаропрочность 8]. [c.196]

    Замечено] что оксидные пленки особенно хорошо 1ащищают сплавы металлов, если представляют собой смешанный оксид двух металлов состава МеО-МегОз, так как в этом случае они имеют плотную структуру типа шпинели. В обычной [c.194]

    Замечено, что оксидные пленки особенно хорошо защищают сплавы металлов, если представляют собой смешанный оксид двух металлов состава МеО МвзОз, так как в этом случае они имеют плотную структуру типа шпинели. В обычной шпинели (М 0 А12О3) атом магния расположен в центре тетраэдра, в вершинах которого находятся атомы кислорода, а атом алюминия — в центре кислородного октаэдра. [c.258]

    Лигатур Ы.1Б металлургии черных и цветных металлов титан применяется в качестве раскислителя и деазотизатора, так как он энергично соединяется с кислородом и азотом, образуя соединения, уходящие в шлак.сЛля этой цели используют ферротитан (18—25% Т1), купротитан (5—12% Т1), алютит (40% А1, 22—50% Т1 и до 40% Си). Очистка от кислорода способствует образованию тонкой плотной структуры стали, обладающей повышенными механическими свойствами. Титан связывает и серу, вызывающую красноломкость стали, х/ При введении титана в качестве легирующей добавки в хромо-никелевые нержавеющие стали (до 0,8%) образуются включения карбидов титана, повышающие жаростойкость и уменьшающие склонность к межкристаллитной коррозии при сварке и термической обработке. У Присадка 0,05—0,15% титана к обычной углеродистой стали облагораживает ее и улучшает механические свойства. Введение титана в алюминиево-магниевые сплавы (до 0,6%) улучшает их механические свойства, повышает коррозийную стойкость и устойчивость к окислению при нагревании [II, 35]. [c.242]

    Атомная структура материалов, не являющихся чистыми вешествами. На рис. 54 показана атомная структура сплава золота с медью, применяемого нри изготовлении ювелирных изделий. Этот сплав состоит из небольших кристаллических зерен, прочно удерживаюшдхся вместе благодаря действующим между ними межатомным силам каждое зерно такого сплава состоит из атомов регулярно расположенных в кз бической плотнейшей упаковке, о которой говор1ыось в гл. II при описании структуры металлической меди. Однако распределение атомов золота и атомов меди в сплаве беспорядочное в кристаллической структуре сплава положение атомов того и другого вида случайное (рис. 54). Беспорядочное распределение атомов золота и меди приводит к тому, что отношение числа атомов золота к числу атомов меди в кристаллах такого твердого раствора неопределенно и, следовательно, состав данного сплава не обусловлен структурой кристалла, а зависит от относительных количеств золота и меди, взятых при изготовлении сплава. [c.76]

    При добавках лития до 5,7 вес. % решетка магния остается гексагональной с плотной упаковкой (я-струк-тура), при содержании от 5,7 до 10,3 вес. % лития система М — Ы состоит из двух фаз а -I- р, т. е. происходит частичный переход сплава в кубическую объемноцентри-рованную структуру дальнейшее повышение содержания лития (12 вес. % и выше) приводит к полному превращению структуры сплава в объемноцентриро-ванную кубическую (Р-фаза). Добавки снижают удельный вес сплава и улучшают его механические свойства, особенно пластичность и деформируемость в холодном и горячем состояниях. После 1948 г. проводились многочисленные исследования по изысканию промышленных магний-литиевых сплавов (с содержанием до 12—14% лития), в состав которых входили бы третьи, четвертые и другие компоненты (цинк, алюминий, кремний, цирконий, олово, марганец, кадмий, серебро, церий и остальные редкоземельные металлы, медь, бор, барий, кальций, индий, бериллий и др.). Удалось создать сплавы со структурой р-фазы с хорошими механическими свойствами в литом и катаном состоянии, не уступающие легким сплавам с более высоким удельным весом, одйако эти свойства непостоянны при обычных температурах. Ведутся работы по уменьшению нестабильности этих сплавов. Проблема создания новых магниевых сплавов с литием весьма актуальна и представляет особый [c.31]

    Литые сплавы постоянных магнитов типа алнико (А1—Ре—N1—Со), алсифер (А1—31—Ре) и др. получаются крупнозернистыми и хрупкими с включениями А1гОз. При изготовлении из них изделий сложной формы бывает много брака и отходов (выше 50%) на операциях литья и обработки шлифованием (резание этих сплавов возможно только алмазными инструментами). Металлокерамич. метод устраняет эти затруднения, получаются изделия с мелкозернистой плотной структурой, лучше литых по прочности. Брикеты прессуют близкими по форме и размерам к конечным изделиям. Потери и отходы при прессовании и спекании составляют 2—3%. Алюминий вводят в исходную шихту в форме легко измельчаемых порошков хрупких лигатур Ре—А1 или Ре—Со — А1. При необходимости спеченные изделия уплотняют дополнительным горячим прессованием. [c.135]

    С практической точки зрения покрытия сплавами имеют 1мяого преимуществ. Эти покрытия обладают особенно однородной, плотной структурой и часто имеют блестящий вид. Их твердость во много раз превосходит твердость чистого металла. Особенно перспективны покрытия сплавами с декоративной точки зрения, так как, например, сплавы меди и золота в зависимости от условий осаждения могут быть осаждены с различными оттенками. Покрытия сплавами в результате особенностей структуры поверхности часто имеют повышенную стойкость к потускнению, высокую стойкость к истиранию и хорошие защитно-коррозионные свойства. Ограниченная в большинстве случаев пористость таких покрытий обусловливает хорошую защиту основного металла. Сплавы, состоящие из дефицитного и недефицитного металлов, выгодны с экономической точки зрения. Такие металлы, как например вольфрам и молибден, которые с большим трудом удается (или совсем не удается) осадить из водных растворов, часто осаждают в виде сплава с другим металлом. [c.55]

    Г Сварные швы, выполненные аргоно-дуговой, роликовой или то- чечной сваркой, вследствие изменения структуры сплава обладают № пониженной коррозионной стойкостью. Непосредственно перед точеч- г ной или роликовой электросваркой внутренние поверхности шва покрывают плотным слоем пассивирующей грунтовки. Для обеспече- ния хорошей адгезии грунтовку следует наносить на оксидированные поверхности не позже, чем через 72 ч с момента оксидирования. [c.195]

    Таким путем создается весьма плотная структура и гомогенное соединение. При выполнении порошковой наплавки важно не допускать перегрева наплавочной ванны, так как из-за хорошей смачиваемости самофлюсую-[циеся сплавы легко растекаются, снижая толщину наплавляемого слоя. Кроме того, перегрев может вызвать химические реакции в аилавочиой ваипе с образованием газообразных продуктов, приводящих к пористости наплавленного слоя. [c.80]

    Очень важная область ирименения редкоземельных металлов — получение аккумуляторов водорода на основе интерметаллидов, в состав которых входят переходные металлы и РЗЭ. Примером может служить интерметаллид ЬаН15 и др. Замечательным свойством таких сплавов является их способность в мягких условиях взаимодействовать с водородом, а потом при незначительном нагревании отдавать водород. Установлено, что такого рода сплавы могут поглотить количество водорода в 1,5—2 раза большее, чем его содержится в таком же объеме жидкого или твердого водорода. По-видимому, молекулярная структура твердого водорода является настолько рыхлой, что включение атомарного водорода в пустоты кристаллической структуры упомянутых интерметаллидов позволяет получить более плотный (по водороду) материал. Аккумуляторы водорода на основе интерметаллидов, содержащих РЗЭ, успешно прошли испытания при создании водо-род-кислородных топливных элементов, в свою очередь успешно применяемых вместо современных двигателей внутреннего сгорания, ко- [c.71]

    Смысл определяющего влияния ФЭК на состав и структуру электронных соединений можно понять с привлечением представлений зонной теории. Каждой кристаллической структуре отвечает характерный для нее зонный энергетический спектр электронов. Валентная зона заполняется электронами не беспредельно и вмещает только определенное их число. По заполнении зоны наступает такой момент, когда энергия электронов так резко повышается, что данная структура оказывается нестабильной и происходит изменение кристаллического строения сплава. Возникаюшдя при этом новая структура будет соответствовать большей электронной концентрации. В качестве примера рассмотрим систему медь — цинк (рис. 114). Чистая медь имеет ГЦК-структуру (кубическая плотнейшая упаковка). При плавлении меди с возрастающим количеством цинка (до 37%) атомы цинка замещают часть атомов меди статистически без изменения типа кристаллической структуры матрицы. Образуется -твердый раствор, которому отвечает вполне определенная область электронной концентрации. Эта [c.220]

    Лодочки — прямоугольные и круглые, как открытые, так и с крышкой, применяют для спекания твердых сплавов, плавки редких и полупроводниковых металлов в электрических печах в защитной атмосфере. Для их изготовления используют графит марок ГМЗ, МГ, МГ-1, ППГ. Для получения материалов для полупроводниковой и электронной техники наряду с графитами ГМЗ, МГ, МГ-1, ППГ используют более плотные марки графита ЗОПГ, МПГ-6, МПГ-8, ГТМ. После дополнительной очистки в среде активных газов при графитации из этих г рафитов чистотой классов ОСЧ-7-3 и ОСЧ-7-4 изготавливают различные конструкционные элементы технологического оборудования. Лодочки и тигли используют для восстановления диоксида германия, синтеза интерметалличе-ских соединений, зонной очистки и вытягивания монокристаллов [38]. Срок службы лодочек из графита марки ГМЗ-ОСЧ при восстановлении достигает 20000 ч, в течение которых она выдерживает до 500 операций, а при зонной плавке - 5000 ч. Графитовые нагреватели, пьедесталы, экраны и другие детали работают в установках для получения монокристаллов кремния, эпитаксиальных структур, карбида кремния и т.п. [38]. [c.253]

    Наиболее распространенные растворы представляют собой жидкости. Газированная вода, например, является жидким раствором двуокиси углерода в воде. Воздух не что иное, как газовый раствор азота, кислорода, двуокиси углерода, водяных паров и аргоноидов. Сплав, из которого изготовляют серебряные монеты, представляет собой твердый, или кристаллический, раствор серебра и меди. Структура этого кристаллического раствора похожа на структуру кристаллической меди, описание которой дано в гл. 2. Атомы расположены здесь в том же порядке, в плотнейшей кубической упаковке, однако атомы серебра и атомы меди чередуются в довольно неупорядоченной последовательности. [c.254]

    Чистый титан имеет две модификации. До температуры 882,5°С он существует в виде а-титана с гексагональной решеткой, а выше температуры полиморфного превращенип — в виде 0-титана с объемно-центрированной кубической решеткой. Как конструкционньгй материал титан в чистом виде, ввиду низкой прочности, почти не применяется. Титан обычно легируют различными а-стабилиэирующими (А1, Ga, La, Се. N, С, О) и -стабилизирующими (Н, Nb, V, Мо, Сг, Fe, Со, Ni, Hf, Zr и др.) элементами, существенно изменяющими его структуру и свойства [ 135]. Высокая коррозионная стойкость титановых сплавов обеспечивается благодаря образованию на поверхности плотных химически мало активных оксидных пленок. Титановые сплавы стойки к сплошной и точечной коррозии в сероводородсодержащих средах, морской воде, углекислом и сернокислом газах и других средах. С помощью подбора легирующих элементов и режимов термической обработки сплавов удается достичь = 1500 МПа и более, что обеспечивает титановым сплавам наивысшую удельную прочность среди конструкционных металлических материалов. [c.70]

    Кластерные частицы-безлигандные металлич. К. в виде ультрадисперсных металлич. систем или голых кластерных ионов. Это особое состояние в-ва, занимающее промежут. положение между кластерными соед., с одной стороны, и коллоидными частицами, чернями, порошками и, наконец, компактными материалами, с другой. Они имеют след, отличит, особенности доля поверхностных атомов металла соизмерима с числом атомов в объеме частицы поверхностная и внутр. энергия отдельно взятой частицы также соизмеримы кристаллич. структура кластерных частиц отличается от структуры массивного образца металла - отсутствует плотная упаковка, увеличены расстояния между атомами и т. д. Форма и структура кластерной частицы носят неравновесный характер и соответствуют состояниям с энергией, отличной от минимальной. В кластерном состоянии могут находиться как любые металлы и сплавы, так и карбиды, нитриды, оксиды, бориды, сульфиды и др., в т. ч. кластерные частицы могут присутствовать в керамич. и композиц. материалах. [c.402]

    Черная металлургия, потребляющая около 90% ванадия, использует его легирующие, раскисляющие и карбидообразующие свойства. В специальных сортах сталей он способствует образованию тонкой и равномерной структуры, делает сталь более плотной, повышает вязкость, предел упругости, предел прочности при ргстяжении и изгибе, расширяет интервал закалочных температур. Карбиды ванадия повышают твердость стали, увеличивают сопротивление истиранию и ударным нагрузкам. Ванадий — важная добавка в инструментальной (до 2%) и конструкционной (до 0,2%) сталях, сталях для газопроводов высокого давления. Развитие тяжелого и транспортного машиностроения обязано ванадиево-марганцевой стали, отличающейся большим сопротивлением удару и усталости. Ванадий используется для легирования сталей в комбинации с хромом, никелем, молибденом, вольфрамом. Им легируют также чугун. В машиностроении применяют чугунное литье с присадкой 0,1—0,35% V для изготовления паровых цилиндров, поршневых колец и золотников паровых машин, прокатных валков, матриц для холодной штамповки. Он — компонент сплавов для постоянных магнитов. Вводят в сталь его в виде феррованадия— сплава железа с 35— 80% V. [c.17]

    Трубы печей пиролиза изготавливают из аустенитных л<аропрочных сталей, характеризуемых кристаллической решеткой твердого 7-раствора, обладающих устойчивой структурой материала. Аустенитообразующим компонентом сплава является никель, содержание которого в количестве более 18% создает условия для сохранения плотно упакованной кристаллической решетки у-раствора, в котором замедляются процессы диффузии, благодаря чему сталь становится более жаропрочной. Хром в составе аустенитной стали (в количестве 17— 27%) способствует увеличению сопротивления ползучести, длительной прочности и жаропрочности. Добавка углерода к аустенитным хромоникелевым сплавам (до 0,45%) способствует сохранению структуры, жаропрочности и увеличению длительной прочности материала. Марганец (1,5—2,0%) также является аустенитообразующим элементом, увеличивающим жаропрочность сплава. Введение кремния до 2,5% в состав сплавов типа Х25Н20 или Х25Н35 делает их более устойчивыми к науглероживанию, повышает их сопротивление окислению и коррозии в атмосфере продуктов сгорания, содержащих серу и сернистые соединения. [c.136]

    Введение Со804 в электролит с Каг У04 приводит к сдвигу поляризации в сторону положительных значений. При совместном разряде Со и W (рис. 35) имеет место деполяризация для обоих компонентов. С повышением температуры катодная поляризация резко уменьшается. С увеличением к выход по току падает в результате возрастания скорости выделения водорода на катоде, а повышение температуры ведет к росту т1к. Содержание вольфрама в сплаве мало зависит от к- Внешний вид и структура покрытия в первую очередь зависят от температуры электролита. Так, при 40—60°С они плотные и блестящие, а при 20°С — серого цвета и без блеска. Сплав Со — имеет гетерогенную структуру, состоящую из е-твердого раствора вольфрама в кобальте и химического соединения СОз> . Последняя фаза имеет гексагональную решетку с параметрами а = 5,130 А, с = 4,13 А, что вполне согласуется с диаграммой состояния системы Со - У. [c.110]


Смотреть страницы где упоминается термин Плотнейшая структура в сплавах: [c.142]    [c.146]    [c.356]    [c.631]    [c.233]    [c.75]    [c.386]    [c.454]    [c.470]    [c.191]    [c.470]    [c.454]   
Природа химической связи (1947) -- [ c.402 ]




ПОИСК







© 2025 chem21.info Реклама на сайте