Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура щелочных металлов

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Металлические структуры обладают некоторыми очень характерными свойствами. Каждый атом в кристаллической структуре металла имеет высокое координационное число (часто двенадцать и иногда восемь), и структура характеризуется высокой электро- и теплопроводностями. Атомы в металле располагаются близко один к другому это означает, что наблюдается значительное перекрывание орбиталей внешних электронов и что валентные электроны фактически связаны не с отдельным ядром, а делокализованы- по всем атомам металла. Таким образом, металл можно рассматривать как ансамбль положительных ионов, которые, вообще говоря, представляют собой сферы одинакового радиуса (марганец и уран являются исключениями), как можно более плотно упакованные в пространстве. Существует два способа плотной упаковки одинаковых сфер один из них приводит к гексагональной, а другой — к кубической симметрии, но в каждом случае координационное число равно двенадцати. Объемноцентрированная кубическая структура щелочных металлов менее плотно упакована для нее координационное число равно восьми и каждый ион имеет восемь ближайших соседей в услах окружающего его куба. [c.136]

    Введение электронодонорных соединений (эфиров, сульфидов, аминов и др.), сольватирующих щелочной металл, приводит к резкому увеличению содержания 1,2-звеньев в полибутадиенах, полученных под влиянием лития и его производных [22]. Структура полибутадиенов, полученных в этих условиях, близка к структуре полимеров, образующихся под влиянием натрия или калия. [c.180]

    Потенциалы возбуждения выше, чем у щелочных металлов. Внутри группы они уменьшаются при переходе от бериллия к барию. Последние линии у легких металлов (Be и Mg) лежат в ультрафиолетовой области, у тяжелых (Sr и Ва) — в видимой. Наиболее интенсивные линии кальция расположены на границе видимой и ультрафиолетовой областей спектра. Их однозарядные ионы имеют электронную структуру щелочных металлов. Они почти также легко возбуждаются и имеют очень интенсивные линии, лежащие в удобной для анализа области спектра  [c.45]

    Рассмотрим изменение свойств элементов главных подгрупп периодической системы элементов. Сравним электронные структуры щелочных металлов (главная подгруппа первой группы)  [c.47]

    Электронная структура щелочных металлов приведена в табл. 13. [c.39]

    Таким образом, повышение давления вначале приводит к усилению перекрытия р-орбиталей и расширению вследствие этого области существования объемноцентрированной структуры щелочных металлов, об- [c.260]


    Передача энергии электронного возбуждения при далеких соударениях (г го) исследуется методом параметра удара в [265, 266], а неупругие соударения с переходами менаду компонентами тонкой структуры щелочных металлов — в [267, 268]. [c.77]

    Структура полибутадиенов при полимеризации щелочными металлами [c.179]

    В основу систематических исследований были положены закономерности, установленные Якубчик с сотрудниками [1] при озо-нолизе полибутадиенов они отметили влияние природы щелочного металла на порядок формирования структур макромолекул. Наибольшее количество 1,4-звеньев содержали полимеры, полученные под влиянием лития.  [c.200]

    Влияние щелочных металлов на качество катализатора (например, натрия) отражается только на его активности. Отравление катализатора объясняется тем, что натрий вступает в структуру алюмосиликата, замещая протон. Повышение содержания натрия в катализаторе приводит к почти полному падению активности, т. е. резкому уменьшению выхода бензина, газа и кокса. Кислотность алюмосили-катного катализатора с увеличением содержания натрия резко падает, а изменения в удельной поверхности, объеме и радиусе пор происходят прп содержании натрия в катализаторе более 0,2%. [c.22]

    СИЛЬНО зависит от стерических эффектов, связанных с катионом. Для контактных ионных пар стереоспецифичность более вероятна это проявляется, например, в реакциях Н/О-обмена [28]. Известно, что краун-эфиры превращают многие (но не все см., например, [17]) контактные ионные пары катионов щелочных металлов в разделенные растворителем ионные пары. Последние реагируют менее специфично [28]. Влияние различных эфирных растворителей (например, эфиров поли-этиленгликоля или добавленных краун-эфиров) на структуру ионных пар рассмотрено в обзоре [32]. [c.20]

    В более поздней гипотезе, предложенной Макошей 26, 27],. было высказано предположение, что депротонирование субстрата происходит на поверхности раздела фаз. Если катализатор в системе отсутствует, то на поверхности раздела фаз образуется как бы двухслойная структура, включающая со стороны водной фазы катион щелочного металла, а со стороны органической фазы депротонированный анион субстрата. Из-за взаимной нерастворимости в противоположных фазах ионы иммобилизуются и в значительной степени дезактивируются. Эта ситуация похожа на обычную адсорбцию на поверхности. [c.58]

    В отличие от щелочных металлов, никель, ванадий, железо, хром и другие тяжелые металлы не изменяют кислотности катализатора. Не происходит существенных изменений и в пористой структуре. Исследователи [45, 54, 132] пришли к выводу, что при отложении тяжелых металлов физические свойства алюмосиликата не меняются, а образуется поверхностный слой, обладающий совершенно иными каталитическими свойствами. В результате металлы оказывают существенное влияние на активность катализа- [c.139]

    Указанный метод состоит в том, что носитель (сорбент) растворяется в расплаве ванадатов щелочных металлов, меняя ири этом свою макроструктуру. Это было установлено при создании износоустойчивого ванадиевого катализатора КС для окисления сернистого ангидрида во взвешенном слое. Этот катализатор был получен путем пропитки носителя — алюмосиликатного катализатора крекинга — раствором солей ванадия с последующей его термической обработкой [89—94, 147—149, 153]. Как известно, алюмосиликатный катализатор крекинга — материал, имеющий вполне определенную, сформировавшуюся глобулярную пористую структуру [84, 122]. Радиус большинства иор составляет единицы и десятки ангстрем. При прокаливании пропитанного соединениями ванадия (например, КУОз) алюмосиликата, структура его изменяется следующим образом радиус иор увеличивается на 1—3 порядка при пропорциональном уменьшении удельной поверхности суммарный же объем изменяется очень незначительно. Результаты, свидетельствующие о трансформации структуры алюмосиликата, представлены на рис. 33. Данные отражают средние результаты многочисленных серий опытов. [c.86]

    Замечательно, что различные структурообразующие факторы не только сосуществуют, но и дополняют друг друга. При их разных сочетаниях осуществляется либо кристаллизация с различной плотностью укладки структурных единиц, либо более сложный процесс, который можно называть в отличие от кристаллизации структурообразованием, приводящий к образованию невообразимого множества однотипных, но все же различных индивидуальных структур, о которых говорилось выше. Таким примером снижения плотности укладки малых нульмерных структурных единиц в результате вмещательства ковалентной составляющей связи является образование сравнительно неплотных кристаллических структур щелочных металлов и металлов IV В — VI В групп, а также железа, для которых координационное число равно всего восьми. [c.160]

    Атомы элементов второй гла вной группы имеют нижний терм s . Последние лийии соответствуют переходу с ближайшего р-терма. Потенциалы возбуждения выше, чем у щелочных металлов. Внутри группы они уменьшаются при переходе от бериллия к барию. Последние линии у легких металлов (Ве и Mg) лежат в ультрафиолетовой области, у тяжелых (Sr и Ва) — в видимой. Наиболее интенсивные линии кальция расположены на границе видимой и ультрафиолетовой областей спектра. Их однозарядные ионы имеют электронную структуру щелочных металлов. Они почти также легко возбуждаются и имеют очень интенсивные линии, лежащие в удобной для анализа области спектфа  [c.48]


    Твердые металлы являются кристаллическими телами, т. е, построены на основе одинаковых элементарных ячеек, п узлах которых лежат частично ионизированные атомы. Повторение таких элементарных ячеек в пространстве образует кристал конечных размеров и обус пвливает его однородность и анизотропию в различных направлениях. Большинство металлов кристаллизуется в одной из следующих трех структур кубической объемпоцентрнрованной (например, щелочные металлы, Ва, аРе, Мо, Ш)—стру <тура а-железа, кубической гранецент-рированной (Са, 5г, N1. А1, (ЗТ1, уТ , уСо, Си, Р1)—структура меди и гексагональной (Ве, Мк, аСо, аТ1, Оз) —структура магния. [c.334]

    П[ и нагревании графита в парах или в расплаве щелочного металла (Сз, НЬ или К) образуются соединения включения — графитиды щелочных металлов, в которых роль аниона играют гексагональные сетки Сз . Структура [c.395]

    Структурные типы Na i и s l довольно широко распростра-н ны среди неорганических веществ, в частности структуры всех галогенидов щелочных металлов принадлежат к этнм типам. [c.148]

    Кристаллы соединений щелочных металлов характеризуются высокими координационными числами. Так, гидриды ЭН имеют структуру типа Na l, га- [c.492]

    Получило дальнейшее развитие предположение о высокой активности в реакции дегидроциклизации комплексных активных центров, содержащих ионы Pt +, химически связанные с поверхностью носителя — AI2O3 [188]. Так, в работах Н. Р. Бурсиан с сотр. [189—192] исследована структура активных центров алюмоплатиновых катализаторов в реакции Сб-дегидроциклизации н-гексана. На основании изучения с помощью экстракционного метода промотирующего действия щелочных металлов (Li, Na, s) на Pt-контакты, а также исходя из полученных данных об отсутствии связи между кислотными и ароматизирующими свойствами изучаемых катализаторов, предложена модель комплексного активного центра, содержащего ион Pt +. [c.256]

    Соли сернистой кислоты называют сульфитами. В соответствии с двухосновностью сернистой кислоты известны кислые сульфиты (гидросульфиты) и средние сульфиты. Гидросульфиты за исключением известных в кристаллическом состоянии МН50з (М = Na, К, Rb, Сз) устойчивы лишь в растворах им, по-видимому, отвечает торая из приведенных структур Нг50з. Сульфиты могут быть выделены большинству этих солей отвечает первая структура H2SO1 (исключение составляют соли некоторых малоактивных металлов). Ион SO3 имеет форму пирамиды с атомом S в вершине. Хорошо растворимы лишь сульфиты щелочных металлов. Соли сернистой кислоты можно получить по реакциям  [c.448]

    Известно, что при радикальной полимеризации не представляется возможным существенно регулировать структуру полимерной цепи. Анионная же полимеризация диенов впервые открыла возможность регулирования структуры полимера путем изменения природы щелочного металла и условий полимеризации. Еще в 30-х годах на Опы тном заводе литер Б было показано, что переход от натрия и калия к литию сопровождается повышением количества 1,4-звеньев в цепи и соответственно понижением температуры стеклования и улучшением морозостойкости полимера. На основании полученных данных был разработан промышленный способ и организовано производство морозостойкого литийбута-диенового каучука (СКБМ). [c.11]

    Такую структуру имеют, в частности, щелочные металлы (см. рис. 1.80). Координационное число в этом случае равно 8. / Структуру, сходную с объемноцентри уР рованной решеткой металлов, имеет хло- [c.146]

    Благодаря работам академика С. В. Лебедева 1,3-бутадиен явился первым мономером, на примере которого были изучены многие вопросы полимеризации, структуры и свойств полимеров, а также создано первое в мире промышленное производство СК. Этот доступный и дешевый мономер сохраняет свое значение и в настоящее время. Помимо каучуков, синтезируемых с помощью щелочных металлов (СКБ, СКВ и СКБМ), на его основе получается большая группа нестереорегулярных сополимерных материалов (СКС, СКМС, СКИ и др.), а также стереорегулярные эластомеры (СКД). [c.176]

    Другие щелочные металлы и их органические производные менее стереоспецифичны в реакциях полимеризации изопрена по сравнению с литием (табл. 4) [41]. То же следует отметить и для щелочноземельных металлов, которые приводят к полиизопрек м со смешанной структурой. .......- [c.211]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Соединения металлов с водородом, называемые гидридами, являются преимущественно ионными, В гидридах щелочных металлов, например КН или NaH, происходит перенос отрицательного заряда к атому водорода. Гидриды щелочных металлов обладают кристаллической структурой типа Na l (см. гл. 1). В соединениях ВеН , MgHj и AIH3 обнаруживается своеобразный тип связей с мостиковыми атомами водорода. В кристаллах этих соединений каждый атом Н равноудален от двух соседних атомов металла и образует между ними водородный мостик. Во всех случаях, когда на атомах Н имеется избыточный отрицательный заряд, он используется для образования второй связи с еще одним атомом, если у последнего имеются неиспользованные возможности образования связей. Отрицательно заряженные атомы Н имеются и в NaH, но в данном случае [c.318]

    В обычных условиях решетку типа хлорида цезия имеют s l, sBr и sl, остальные галогениды щелочных металлов имеют структуру типа Na l. [c.148]

    Фтороберкллаты щелочных металлов стабильнее, чем щелочно- земельных. С увеличением радиуса катиона их стойкость врзра- стает Mg[B p4] не образуется, а Ва[Вер4] плавится без разло жения. Одна из форм кристаллического ВеСЬ " имеет структуру, состоящую из полимерных цепей [c.321]

    Последовательная теория превращения электронной энергии атома в поступательную должна основываться на исследовании неадиабатических переходов между потенциальными кривыми квазимолекулы, образующейся из сталкивающихся атомов. Как отмечалось ранее (см. 9), эти переходы особенно эффективны в областях сближения или пересечения кривых. Поэтому выяснение возможности такой структуры электронных термов составляет одну иа основных задач теории. Наиболее подробно в этом отношении исследованы процессы столкновения возбужденных атомов щелочных металлов М [c.103]

    Существуют различные взгляды на механизм образования основных сульфонатов. Одни исследователи [пат. США 2426540 2451346] считают, что основные сульфонаты являются классическими основными солями. Однако это маловероятно, так как предлагаемая этими исследователями структура не согласуется со структурой щелочных сульфонатов, содержащих более чем удвоенное против теоретического количества металла. Согласно другим работам [пат. США 2501731 2485861] основной сульфонат представляет собой коллоидную суспензию гидроксида щелочного металла в маслорастворимом сульфонате. Что же касается сверхосновных сульфонатов [2, с. 210], обладающих не только большой нейтрализующей способностью, но и значительным диспергирующи м действием то эти свойства можно объяснить наличием в них большого количества полярного неорганического основания Ме(ОН)2-МеО-МеСОз. Исходя из этого общую [c.77]

    Цеолитные i лтализаторы значительно более устойчивы к нагреву и обработке водяным паром. Их структура не деформируется даже при нагреве до 1100 °С. Считается, что повышенная стабильность обусловлена геометрической структурой кристаллической решетки цеолита. Влияют на нее также природа обменивающегося катиона, степень обмена, соотношение оксидов кремния и алюминия. Последнее подтверждает рис. 5.5. Природа обменивающегося катиона оказывает сильное влияние на стабильность цеолитов. Температура, при которой разрушается кристаллическая структура, возрастает с увеличением размера катиона в ряду щелочных металлов, что обусловлено способностью различных катионов заполнять пустоты в кристалле после дегидратации. Трехвалентные катионы образуют наиболее стабильные цеолиты. В промышленных катализаторах содержание натрия поддерживают на минимально возможном уровне для предотвращения деформации структуры цеолита при эксплуатации в реакторе. [c.107]

    Изложенные наблюдения, свидетельствующие о различном отношении близ1л1х по структуре непредельного и предельного третичных галоидалкилов каце10ну и бензофенону в присутствпи Мд, конечно, не могут быть объяснены различием в пространственных трудностях этих кетонов. Более вероятно это различие объясняется тем, что образование третичных спиртов стимулируется близкими зарядами радикалов (см. представленный выше ряд радикалов, расположенных по их убывающему заряду). Заряд метила ближе к заряду радикала непредельного третичного галоидалкила, а заряд фенила ближе к заряду радикала предельного третичного галоидалкила. Способность же непредельного третичного галоидалкила реагировать с бензофеноном в присутствии N3, повидимому, говорит о том, что отрицательные заряды, индуцируемые на радикалы щелочными металлами [c.243]

    Толщина прослоек уменьшается с увеличением концентрации дисперсной фазы, что соответственно приводит к увеличению прочности структуры, но к уменьшению ее пластических свойств. Как известно, лиофильность поверхности частиц можно изменять с помощью поверхностно-активных веществ, в том числе высокомолекулярных. ПАВ и ВМС могут изменять структуру межчастичных прослоек. Лиофильность поверхности частиц возрастает с развитием двойных электрических слоев, их диффузной части, что обеспечивается заменой всех катионов на поверхности частиц однозарядными катионами щелочных металлов. Этот метод широко используется, например, для увеличения текучести глинистых су -пеизий. [c.384]

    Криптанды образуют комплексы включения криптатного типа криптаты) с пикратамн щелочных металлов (Ма+, К+ или С8+). Криптанды функционируют как переносчики катионов, растворяя пикрат щелочного металла в жидкой хлороформной мембране в виде ионной пары криптат — пикрат (1 1), а затем освобождая его в ннтерфазу наружного водного слоя [149]. Путем сравнения установлено, например, что 5-4 переносит К а+ и К+ гораздо быстрее, чем 5-1. Это означает, что в результате удаления двух кислородсодержащих связывающих центров криптанд превращается из специфического рецептора К (5-1) в специфический переносчик. К+ (5-4). Работа Лена по криптатам позволила создать лиганды, которые в зависимости от структуры могут быть либо рецепторами, либо переносчиками катионов. Наиример, для 5-1 как переносчика эффективность [c.280]


Смотреть страницы где упоминается термин Структура щелочных металлов: [c.171]    [c.223]    [c.469]    [c.537]    [c.592]    [c.96]    [c.562]    [c.569]    [c.121]    [c.121]    [c.316]    [c.327]    [c.276]   
Природа химической связи (1947) -- [ c.388 , c.390 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние солей щелочных металлов на характер изменения пористой структуры

Дублетная структура в спектрах щелочных металлов

Кристаллическая структура азидов щелочных металлов

Кристаллическая структура галогенидов щелочных металло

Кристаллическая структура галогенидов щелочных металлов

Металлы структура

Общая структура спектров щелочных металлов

Структура воды. Соли полистиролсульфоновой кислоты и щелочных металлов

Щелочных металлов кристаллическая структура

алиды щелочных металлов, структура



© 2025 chem21.info Реклама на сайте