Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностно-активные вещества адсорбция из полярных сред

    Отсюда следует, что все полярные гидрофильные поверхности должны хорошо адсорбировать поверхностно-активные вещества из неполярных или слабополярных жидкостей и, напротив, неполярные гидрофильные поверхности хорошо адсорбируют поверхностноактивные вещества из полярных жидкостей. Именно на этом основано практическое применение полярных адсорбентов (силикагель, глины) для адсорбции поверхностно-активных веществ из неполярных сред и неполярных адсорбентов для адсорбции из полярных сред. При повышении температуры адсорбция из раствора умень- [c.270]


    Однако применение ингибиторов коррозии для защиты оборудования в системе подготовки нефти имеет свои специфические особенности и недостатки. Введение ингибитора в жидкость не обеспечивает защиты поверхности оборудования в газопаровой фазе на эффективность защитного действия ингибиторов существенное влияние может оказать изменение физико-химических характеристик сред. При наличии в двухфазной среде одновременно неионогенного поверхностно-активного вещества и ингибитора происходит их совместная адсорбция на межфазной поверхности капель углеводорода. При этом адсорбционно-активные полярные группы ингибитора блокируются более активными в водной среде [c.151]

    По П. А. Ребиндеру, стабилизующее действие гелеобразных адсорбционных слоев стабилизатора обусловливается тем, что высоковязкая прослойка между частицами не успевает выдавиться за время столкновения частиц дисперсной фазы в результате броуновского движения или в потоке. В известных условиях стабилизация дисперсных систем адсорбционно-сольватными слоями, обладающими упругостью и механической прочностью, может безгранично повышать устойчивость системы вплоть до полной фиксации ее частиц. Примером этому может служить отвердевание жидких прослоек между воздушными пузырьками пены в результате геле-образования или полимеризационных процессов. П. А. Ребиндер отмечает, что образования структурно-механического барьера достаточно для стабилизации только тогда, когда на наружной границе адсорбционного слоя поверхностная энергия мала и не резко возрастает на подступах к частице. При наличии хотя и структурированной, но не лиофильной, а лиофобной оболочки все же может происходить слипание частиц путем сцепления оболочек наружными поверхностями. Такого рода явления можно наблюдать при флотации в результате адсорбции поверхностно-активных веществ полярными группами на поверхности гидрофильных твердых частиц. Направленные в водную среду углеводородные цепи связываются друг с другом своеобразной местной коалесценцией гидрофобных оболочек. [c.284]

    Смачивание весьма заметно изменяется при адсорбции капиллярно активных веществ на твердой поверхности. Адсорбируясь на поверхности твердого тела, полярно-асимметричные молекулы ориентируются в адсорбционном слое таким образом,, что к поверхности обращены их полярные группы, а углеводородные радикалы направлены в окружающую среду. Подобного-типа адсорбция может вызвать инверсию смачивания вследствие образования гидрофобной пленки из поверхностно активных веществ. Способность поверхностно активных веществ менять величину и знак смачивания, т. е. вызывать инверсию, изменяется всегда параллельно адсорбируемости и резко растет в гомологическом ряду с удлинением углеводородного радикала органических веществ. [c.217]


    Такие четырехкомпонентные микроэмульсионные системы, включающие мицеллообразующие ПАВ, обычное ПАВ (чаще всего это спирты С5—С12), углеводород и воду, а также пятикомпонентные системы, содержащие, помимо перечисленных веществ, электролиты, приобрели особое значение в последние годы в связи с проблемой повышения нефтеотдачи пластов, о которой говорилось в гл. П1. Тонкое регулирование полярности дисперсионной среды за счет изменения концентрации компонентов, длины цепи углеводорода и спирта и природы (гидрофильно-липофильного баланса) мицеллообразующего ПАВ позволяет в этих случаях получать как прямые, так и обратные микроэмульсии. Они могут находиться в равновесии с макрофазой — молекулярным раствором того же состава, что и состав дисперсной фазы микроэмульсии. Подобно случаю двухкомпонентных критических систем (см. 2), соответствующим подбором состава здесь удается получить микроэмульсии — обратные и прямые, равновесные друг с другом и, кроме того, с дисперсионной средой промежуточной полярности. Такие микроэмульсионные системы могут образовывать фазовую границу раздела с очень малым поверхностным натяжением как с водой, содержащей определенную концентрацию солей, так и с углеводородом. Для этого необходимо достижение такого баланса молекулярных взаимодействий в объемах и на границе фаз, когда ПАВ обнаруживает примерно одинаковую поверхностную активность при адсорбции на границе из обеих фаз водной и масляной. [c.235]

    Регулирование процессов структурообразования в концентрированных суспензиях в углеводородной среде и наполненных растворах высокополимеров достигается адсорбционной активацией частиц поверхностно-активными веществами [10, ПО, 111, 132, 137, 156]. Активация, приводящая к упрочнению структуры, определяется ориентированной адсорбцией мономолекулярного слоя ПАВ, при которой полярные группы химически связаны с поверхностью частиц наполнителя, а углеводородные цепи, направленные в окружающую среду, лиофилизуют эту поверхность. [c.208]

    Было изучено влияние на устойчивость и. коагуляцию золей гидрата окиси железа и сульфида мышьяка адсорбции неионогенных поверхностно-активных веществ, дифильные молекулы которых состоят из неполярного углеводородного радикала и полярной полиоксиэтиленовой цепи. В зависимости от интенсивности взаимодействия поверхности коллоидных частиц с дисперсионной средой влияние неионогенных поверхностно-активных веществ на коллоидные системы оказалось различным даже в качественном отношении. Поверхностно-активные соединения при малых их концентрациях в системе не повышали гидрофильности частиц гидрата окиси железа и уменьшали устойчивость гидрозоля к действию [c.298]

    В соответствии с правилом Ребиндера адсорбция веществ будет происходить, если полярность их лежит между полярностью среды и адсорбента. Следовательно, чем больше разность полярностей между растворяемым веществом и раствором, т. е. чем менее растворимо вещество, тем лучше оно будет адсорбироваться. Действительно, неполярные гидрофобные вещества (в частности, активный уголь) хорошо адсорбируют поверхностно-активные вещества, что широко используется в водоподготовке. Помимо полярности, важную роль играют другие параметры. С увеличением молекулярного веса адсорбтива адсорбция возрастает. Этим объясняется, в частности, хорошая адсорбция красителей. [c.23]

    Максимально гидрофобизованная гидрофильная поверхность, покрытая ориентированным мономолекулярным адсорбционным слоем поверхностно-активного вещества, особенно связанного с ней химически, не теряет способности к дальнейшей адсорбции последнего, которая приводит к неориентированному беспорядочному расположению адсорбированных молекул без их химической фиксации (если она ранее имела место). В полярной среде такая дополнительная адсорбция может привести даже к обратной ориентации молекул поверхностно-активного вещества — гидрофобными углеводородными группами к первоначальному адсорбционному слою, а гидрофильными полярными группами наружу. Это вызывает улучшение смачивания гидрофобизованной поверхности — ее гидрофилизацию (рис. 4, кривая 2). [c.24]

    В дисперсных системах с неполярной дисперсионной средой (бензол, жидкие углеводороды алифатического ряда, вазелиновое масло и т. д.) защитными являются все поверхностно активные вещества дифильной структуры. Сюда относятся жирные кислоты и их соли, спирты, фенолы, амины и др. Защитное действие этих веществ тем сильнее, чем длиннее углеводородная цепь при данной полярной группе (последнее способствует адсорбции, ориентации и сольватации и, следовательно, стабилизации). [c.378]

    Действительно, если дисперсная фаза и дисперсионная среда (состоящая, в основном, из молекул растворителя) резко различаются по своей полярности, взаимодействие между ними будет незначительным, что создает благоприятные условия для адсорбции именно растворенного вещества (а не растворителя). Чем больше свободная энергия (пропорциональная разности полярностей) на межфазной границе, тем больше возможность снижения ее за счет адсорбции растворенного вещества, обладающего обычно промежуточной полярностью (ПАВ). Необходимо, таким образом, создать условия для проявления поверхностной активности, а следовательно, преимущественной адсорбции второго компонента. Например, для адсорбции бензойной кислоты из водного раствора следует применять неполярный адсорбент — уголь, для адсорбции ее из раствора в бензоле — полярный адсорбент, например силикагель. Если же мы применим силикагель для водного раствора, произойдет адсорбция полярных молекул воды и условия для адсорбции молекул кислоты окажутся неблагоприятными. [c.174]


    Высокоактивные кислотные льюисовские центры вызывают разложение чувствительных веществ в процессе их разделения. Чтобы подавить активность этих центров, к окиси алюминия добавляют 1-3% воды [9]. Разложение пробы на окиси алюминия могут также вызывать кислотные или основные поверхностные реакции. В окиси алюминия, полученной из байерита, сохраняется некоторое остаточное количество байерита в форме алюмината натрия pH водных суспензий такой окиси алюминия равен девяти, и поэтому ее называют основной . В полярных средах, особенно в воде, поверхностные центры алюмината натрия могут действовать как катионообменные центры, что можег приводить к необратимой адсорбции катионных соединений, например к разложению чувствительных к щелочам соединений. При обработке основной окиси алюминия сильными кислотами, например соляной, протекает следующая реакция  [c.110]

    Процесс адсорбции относится к поверхностным явлениям, протекающим на границе раздела соприкасающихся фаз жид-кость-твердое тело. В результате адсорбции на поверхности твердого тела формируется слой молекул и атомов, способных удерживаться на ней. Известно, что на адсорбционную активность влияют среда, растворенное вещество и твердая поверхность. При этом справедлив ряд закономерностей чем лучше среда растворяет адсорбтив, тем хуже идет процесс адсорбции чем больше теплоты выделяется при смачивании твердой поверхности средой, тем хуже идет процесс адсорбции растворенного вещества преимущественно адсорбируется то вещество, которое на границе раздела фаз в большей степени выравнивает разность полярностей контактирующих фаз. [c.8]

    Действие активированных смазочно-охлаждающих сред на процесс резания металлов различные авторы объясняют по-разному. Так, работы [62—68] позволили установить, что сопротивление металлов деформированию и разрушению понижается вследствие адсорбции ими поверхностно-активных веществ из окружающей средьь Если ПАВ не могут проникнуть внутрь кристаллической решетки твердого тела, то они снижают энергию его внешней поверхности, облегчая выход дислокаций наружу. Способностью к адсорбционному пластифицированию поверхности металлов обладают органические кислоты, спирты, их эфиры, амины, сульфиды, хлориды, а также жидкие металлы и многие другие ПАВ. По эффективности полярных групп молекулы ПАВ располагаются в следующий ряд  [c.47]

    Было изучено влияние на устойчивость и коагуляцию золей гидрата окнси железа и сульфида мышьяка адсорбции неионогенных поверхностно-активных веществ, дифильные молекулы которых состоят из неполярного углеводородного радикала и полярной полиоксиэгиленовой цепи. В зависимости от интенсивности взаимоде ствия поверхности коллоидных частиц с дисперсионной средой влияние неиоюгенных поверхностно-активных веществ на коллоидные системы оказалось различным даже в качественном отношении. Поверхностно-активные соединения при малых их концентрациях в системе не повышали гидрофильности частиц гихрата окиси железа и уменьшали устойчивость гидрозоля к действию электролитов. Это, очевидно, связано с промежуточным характером золя Ре(ОН)з, имеющего достаточно гидрофильные частицы. При больших концентрациях иеионогенные поверхностно-активные вещества вызывали коагуляцию золя Ре(ОН)з. [c.298]

    Наиболее эффективная защита системы (особенно концентрированной) от протекания процессов коагуляции, в том числе и при введении электролитов, обеспечивается применением поверхностно-активных веществ низкомолекулярных мицеллообразующих ПАВ и высокомолекулярных так называемых защитных коллоидов . Адсорбция таких высокоэффективных стабилизаторов приводит к возникновению на поверхности частиц струк-турно-механического барьера, полнсютью предотвращающего коагуляцию частиц и возникновение между ними непосредственного контакта, р 1звитие которого может вызвать необратимое изменение свойств систем. Роль структурно-механического барьера особенно велижа при стабилизации обратных систем — суспензий и золей полярных веществ в неполярных средах, в которых электростатическое отталкивание, как правило, не существенно. Полное предотвращение сцепления частиц благодаря образованию защитного слоя ПАВ может происходить не только в разбавленных золях, но и в концентрированных пастах в последнем случае ПАВ служит пластификатором, обеспечивающим легкоподвижность системы (см. гл. XI). Подбор ПАВ для стабилизации суспензий и золей различного типа сходен с выбором ПАВ для стабилизации прямых и обратных эмульсий это должны быть ПАВ, относящиеся к третьей и четвертой группам с высокими значениями ГЛБ при стабилизации суспензий и золей в полярных средах и низкими (маслорастворимые ПАВ) — в неполярных. [c.355]

    Ко второй группе относятся вещества, поверхностно-активные на границе двух несмешивающи.хся жидкостей или на твердых поверхностях раздела, но не образующие структур ни в объеме раствора, ни в поверхностных слоях. Адсорбируясь и тем самым понижая свободную поверхностную энергию жидкости или твердого тела, они облегчают процесс образования новых поверхностей, т. е. диспергирование в данной среде. Адсорбируясь на твердых поверхностях, поверхностно-активные вещества второй группы могут резко изменять молекулярную природу твердой повер.хности. В результате такой ориентированной адсорбции поверхностно-активных веществ происходит гидрофобизация первоначально гидрофильных твердых поверхностей. Эффект гидрофобизации усиливается химической связью — фиксацией полярных групп молекул поверхностно-активного вещества на соответствующих участках твердых поверхностей. Длинные углеводородные цепи, ориентированные наружу, вызывают несмачиванне такой поверхности водой или избирательное вытеснение воды с иоверхности неполярной жидкостью. [c.193]

    Смачиваемость твердой частицы водой, как известно, определяется степенью ее гидрофобности. Чем более гидрофобно вещество, тем меньше его смачиваемость и лучше флотируе-мость. Изменение смачиваемости флотируемых частиц достигается адсорбцией на их поверхности поверхностно-активных веществ, в результате которой полярные группы ПАВ прикрепляются к частице, а гидрофобные цепи обращаются в объем раствора. Таким образом, нри введении небольших количеств поверхностно-активных веществ флотируемость увеличивается до тех пор, пока их концентрация не вызовет заметное понижение величины поверхностного натяжения волной среды (СТ12), из которой происходит флотация. По воздействию на процесс флотации ПАВ обычно разделяют на две категории коллекторы и пенообразователи. Коллекторы, в основном, изменяют смачиваемость частиц, а пенообразователи адсорбируются, как правило, на границе водная среда — газ и стабилизируют пленку, образующуюся между приближающимися друг к другу пузырьками, препятствуя их коалесценции. Избыток пенообразователя всегда несколько понижает 012 и, следовательно, вероятность акта прилипания частицы к пузырьку [3]. [c.53]

    Поверхностно-активные вещества (ПАВ) способствуют снижению поверхностного (межфазного) натяжения вследствие адсорбции и ориентации молекул на поверхности раздела фаз. Они характеризуются незначительной величиной максимально возможной концентрации их в растворе в молекулярной форме, способностью образовывать мицеллы выше определенной, так называемой критической концентрации мицеллообразования (ККМ), связанной с уменьшением свободной энергии системы, а также солюбизацией водонерастворимых веществ внутри мицелл. ПАВ в основном являются органическими соединениями, молекулы которых имеют дифильное строение, т. е. содержат лиофильные (гидрофильные) и лиофобные (гидрофобные) группы атомов. Гидрофильные группы способствуют растворению ПАВ в воде, а гидрофобные (в основном углеводородные)—в неполярных средах. При адсорбции дифильных молекул гидрофильные группы атомов ориентируются в сторону полярной (например, водной) фазы, а гидрофильные — в сторону неполярной (углеводородной) фазы. [c.160]

    Наиболее полная информация об агрегативной устойчивости систем такого типа получена при электрофоретических исследованиях. Были измерены электрокинетические потенциалы суспензий твердых углеводородов, полученных при обезмасливании тех же петролатумов и содержащих те же поверхностно-активные вещества, которые использованы автором при исследованиях методами кондуктометрии и диэлькомет-рии. Содержание ПАВ в системах изменялось от 0,1 до 1,0%, т.е. начиная с критической концентрации мицеллообразования. Электрокинетические потенциалы суспензий петролатумов (см. рис. 3.13), не содержащих присадок, малы и имеют отрицательное значение, равное примерно — 10 мВ. Это обусловлено адсорбцией смол, содержащих атомы кислорода и серы, на кристаллах твердых углеводородов с ориентацией полярной части молекул в дисперсионную среду. Введение присадок приводит вначале к компенсации отрицательного заряда, а затем при увеличении концентрации - к изменению знака электрокине-тического потенциала на положительный за счет ориентации полярной части молекул ПАВ в дисперсную фазу. [c.126]

    Гидрофильность твердых поверхностей резко понижается в результате адсорбции поверхностно-активных веществ под влиянием ориентированных адсорбционных слоев, их молекул или ионов, особенно резко вследствие хемоадсорбционной связи полярных групп молекул и ориентации углеводородных ценой в окружающую среду. Такое снижение гидрофильности, иаз. гидрофоблзацией, обнаруживается по резкому понижению смачивания водой и лежит в основе действия флотореагентов, а также различных водоотталкивающих обработок волокон, тканей и др. (см. Гидрофобные покрытия). Характерны явлепия гидрофобизации при действии щелочных солей жирных к-т и др. анионактивных органич. веществ на поверхностях ионных кристаллов с химич. фиксацией полярных групп на поли15алентных катионах, а также при действии алкилксантогенатов на поверхности металлов и сульфидов и катионактивных реагентов (алкилами-пов и солей четырехзамещенных аммониевых оснований или алкилпиридинов) на силикатах и двуокиси кремния. Дажо ничтожные примеси поверхностно-активных веществ в виде загрязнений могут сильно понизить гидрофильность, что дает способ оценки чистоты гидрофильных поверхностей, напр, стекла, к-рые нри загрязнении перестают полностью смачиваться водой. [c.469]

    Впервые был применен ультразвуковой метод днспергирования ферритовых порошков в диспергаторе УЗВД 6. Были применены различные рабочие жидкости с добавками поверхностно активных веществ и без них. Например, были использованы полярные среды — вода и спирт с добавкой 2% триэтаноламина и неполярная среда — четыреххлористый углерод. Диспергирование производили при оптимальном значении избыточного давления, которое определяли по способу, указанному на стр. 295. Степень дисперсности контролировали по удельной поверхности (методом адсорбции азота) и по гранулометрическому составу (метод седиментации и электронный микроскоп) [c.313]

    Приведенные экспериментальные данные, устанавливающие зависимость адсорбционного эффекта пластифицирования металлов от состава внешней активной среды, не только подтверждают чисто адсорбционную природу эффекта, но и показывают, что влияние поверхностно-активных веществ характеризуется закономерностями, свойственными процессу адсорбции на жидких поверхностях раздела. В работах А. Б. Таубмапа было показано [30, 31], что при адсорбции из углеводородных растворов на границе с водой поверхностная активность органических молекул определяется главным образом, работой выталкивания из раствора на поверхность раздела их полярных групп при очень слабом влиянии длины углеводородных цепей, сольватирующихся растворителем. Эти измерения проводились с высшими гомологами поверхностно-активных веществ, не растворимыми в воде, вследствие чего исключалось распре- [c.55]

    Это легко понять, исходя из следующих соображений. Аналогично тому, как чистый углеводород, будучи введен в воду, стремится вследствие нерастворимости отделиться от нее в виде изолированной фазы, так и гидрофобные углеводородные радикалы молекул поверхностноактивных Beuie TB типичного полярно-неполярного строения, находящихся в водном растворе, имеют склонность выделиться из него, образуя вторую фазу полярные же гидрофильные группы при этом стремятся сохранить свою молекулярную дисперсность в среде. Являющаяся следствием этого адсорбция молекул на поверхности и определяет поверхностную активность вещества. С другой стороны, эта же тенденция к образованию второй фазы проявляется и в процессе образования мицелл, являющегося причиной аномалий объемных свойств. Поэтому в растворах естественно ожидать известного параллелизма в изменениях их объемных и поверхностных свойств. [c.313]

    Это, прежде всего, применение адсорбции из растворов на высокодисперсных порощках и пористых адсорбентах для очистки различных растворов от вредных примесей, либо для улавливания и концентрирования ценных веществ из разбавленных растворов. В соответствии с правилом уравнивания полярностей, поверхностно-активные лримеси, растворенные в водной среде, могут быть удалены из нее с помощью неполярных адсорбентов (обычно активированного угля) или же адсорбентов, на которых может происходить хемосорбция полярных групп молекул ПАВ. Чтобы повысить эффективность очистки стоков от растворенных ПАВ, часто используют высокодисперсные системы, возникающие при выпадении новой фазы из пересыщенного раствора (см. подробнее 5 гл. IV). Аналогичным способом могут быть извлечены и электролиты (см. подробнее в 6 гл. VII). При очистке от примесей маслорастворимых ПАВ неполярных сред (например, для повышения электрической прочности трансформаторных масел) используются полярные адсорбенты, в частности высоко-дисперсные глины и цеолиты. [c.92]

    Здесь, как и во многих других местах книги, авторы в яе,ном противоречии с приводимыми ими в тексте данными подчеркивают, что действие типичных поверхностноактивных веществ иногда не связано с присущей им поверхностной активностью. Это ошибочное утверждение, вызванное тем, что авторы исходят из узкого определения понятия поверхностная активность , имея в виду лишь поверхность раздела жидкость—газ, не было бы допущено ими при более широкой трактовке поверхностной активности как способности органических веществ адсорбироваться из любой жидкой среды, как водной, так и неводной, на любой поверхности раздела, в том числе и на поверхностях твердых тел. В этом случае, как и всегда, адсорбция сопровождается понижением поверхностной энергии системы в соответствии с уравнением Гиббса, хотя непосредственно оно не может быть измерено. Особое значение для адсорбции на твердых телах имеет природа полярных групп ПАВ и возможность химического взаимодействия их с подкладкой, которое в ряде случаев может оказаться настолько сильным, что образующиеся адсорбционные слои будут необратимо связаны с поверхностью. Но и в отсутстЕше хемоадсорбционного взаимодействия обычная обратимая физическая адсорбция может вызвать значительные эффекты, если применяются сильноповерхностноактивные длинноцепочечные гомологи, особенно в неводных (углеводородных) средах. [c.128]

    Этими вопросами обстоятельно занимались Ленгмюр [8], Гаркинс [9], Адам [10], Гарди [11] и др., которые пришли к следующему выводу поверхностно-активными могут быть те вещества, молекулы которых содержат резко полярные группы, а вся остальная неполярная часть молекулы (углеводная цепь) имеет достаточную ДJннly, т. е. для образования адсорбционного слоя на границе жидкоспэ — жидкость или жидкость — газ необходимо, чтобы одни из групп молекул были химически активными к одной фазе, ч другие группы — к другой. Например, группы (ОН) И1И (СООП) будут притягиваться к водной среде, а углеводородные— к неполярной среде. В системе жидкость — газ угле-подородныс группы как бы выталкиваются из воды. Энергия выталкивания и определяет работу А — адсорбции, причем между работой А и отношением адсорбции к концентрации поверхностно- [c.11]

    ПАВ — это вещества с асимметричной структурой, в которых молекулы состоят из одной или нескольких гидрофильных групп и содержат одну или несколько гидрофобных радикалов. Гидрофильная группа — активная полярная составляющая молекулы ПАВ — обладает ненасыщенной вторичной валентностью и на границе раздела нефть — вода погружается в водную фазу. Гидрофобная группа (радикал) — инактнвная неполярная составляющая молекулы ПАВ, не имеет валентности и тяготеет к нефтяной (масляной) фазе. Ее часто называют олеофильной группой. Она представляет собой цепочку углеводородных радикалов. Такая структура молекул веществ, называемая дифильной, обуславливает ее поверхностную (адсорбционную) активность, т. е. способность вещества диффундировать через объем фазы и концентрироваться на поверхностях раздела фаз таким образом, что полярная (гидрофильная) часть молекулы, имеющая родственную природу с полярной фазой (например, водой), растворяется в ней, а неполярная (олеофильная) цепочка ориентируется в сторону менее полярной фазы, например нефти или керосина. ПАВ адсорбируются и на твердой поверхности, изменяя при этом ее молекулярно-поверхностные свойства. В результате адсорбции ПАВ происходит диспергирование гетерогенных систем образование защитной, более гидрофобной (или гидрофильной) по сравнению с первоначальной, пленки стабилизация (дестабилизация) дисперсной среды. [c.66]

    Из сказанного следует, что величину р можно рассматривать как одну из характеристик молекулярных свойств растворителей. Различия в этих деталях молекулярного механизма адсорбции из воды и из других, неводных, сред важны для суждения о П. а. веществ на разных поверхностях и, в частности, твердых тел. При адсорбции па твердых поверхностях основная роль принадлежит полярным группам, способным специфически взаимодействовать с поверхностными атомами (ионами) решетки тела. Поэтому на границе твердое тело — жидкость значительной П. а. могут обладать и низшие короткоцепочечные гомологи органич. веществ, причем при адсорбции из водных р-ров более высокие гомологи данного ряда будут, в соответствии с правилом Траубе, более поверхпост-но-активны. Однако при адсорбции па твердых пористых адсорбентах — силикагелях, активных углях и др., часто наблюдается обратная зависимость. Такое обращение правила Траубе вызвано эффектом ультранористости , заключающимся в том, что очень мелкие поры препятствуют поглощению органич. молекул и тем в большей степеии, чем они крупнее. [c.49]


Смотреть страницы где упоминается термин Поверхностно-активные вещества адсорбция из полярных сред: [c.141]    [c.141]    [c.221]    [c.23]    [c.469]    [c.185]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция поверхностная

Активность среды

Поверхностная активность

Поверхностно-активные вещества



© 2025 chem21.info Реклама на сайте