Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижной слой жидкости распределение скорости

    Вблизи переливного борта вязкие жидкости расслаиваются, в результате чего возникает тороидальный вихрь, вызывающий отрицательную донную скорость. Доля жидкости, участвующей в циркуляции, составляет примерно 5...15% от общего расхода и зависит от вязкости и объемного расхода жидкости, фактора разделения и, вероятно, от отношения высоты борта к длине ротора. На толщину подвижного слоя и распределение осевых скоростей влияет характер изменения тангенциальной скорости по толщине слоя. [c.12]


    Рассмотрим характеристики процессов, протекающих на перфорированной решетке (ситчатой тарелке), способствующей равномерному распределению газа по сечению аппарата. При постепенном возрастании скорости газа в свободном сечении аппарата слой пены Н увеличивается (рис. 2) за счет уменьшения толщины слоя барботажа, и при определенной скорости газа барботажный слой практически исчезает, превращаясь в слой ячеистой пены. При дальнейшем увеличении скорости газа структура пены меняется — она становится подвижной, превращается в сильно турбулизованную газожидкостную систему. Такая пена представляет собой взвешенный слой жидкости в виде быстро движущихся пленок и струй, хорошо перемешанных с пузырьками и струями газа. С последующим ростом скорости газа турбулентность пены возрастает, ее структура приобретает вихревой характер, количество брызг над слоем увеличивается и при Юг = 3—3,5 м/с — значительная часть жидкости уносится с решетки уходящим газом. [c.14]

    Можно осуществить барботаж газа через жидкость на перфорированной решетке (ситчатой тарелке), способствующей равномерному распределению газа по сечению аппарата. Тогда при постепенном повышении объемной скорости газа, или линейной скорости газа в общем сечении аппарата, слой пены будет увеличиваться за счет уменьшения толщины слоя барботажа, и при определенной скорости газа слой барботажа практически исчезнет. При этом вся жидкость на тарелке будет находиться в слое ячеистой пены, так как брызго-образование почти отсутствует. При дальнейшем увеличении скорости газа жидкость продолжает оставаться на тарелке, но структура пены меняется—она становится подвижной, превращается в сильно турбулизованную газо-жидкостную систему. Такая пена представляет собой взвешенный слой жидкости в виде быстро движущихся пленок и струй, хорошо перемешанных с пузырьками и струями газа. [c.8]

    Во взвешенном слое частицы интенсивно и хаотически перемещаются внутри слоя вследствие некоторой неравномерности скорости потока в различных сечениях слоя подобная неравномерность распределения скоростей непрерывно меняется вследствие интенсивного движения частиц. У стенок аппарата обычно преобладающим является перемещение частиц сверху, вниз. Такой взвешенный слой зернистого материала называют кипящим или псевдоожиженным. Подобное наименование возникло потому, что такой слой обладает подвижностью, текучестью, вязкостью, способностью к отстаиванию более крупных частиц и другими особенностями, характерными для жидкостей, да и по внешнему виду он похож на кипящую жидкость. [c.400]


    Электродный потенциал. Если в чистую воду опустить, например, цинковую пластинку, то поверхностно расположенные катионы металла будут гидратироваться полярными молекулами воды. В результате этого связь поверхностно расположенных катионов с металлической пластинкой ослабляется, металл будет как бы поверхностно растворяться (рис. 18-1). Гидратированные катионы начнут вовлекаться в общее тепловое движение частиц жидкости — фактор, ведущий к диффузионному распределению катионов металла в толще жидкости, т. е. растворению металла. Однако электроны, в избытке остающиеся в металле, заряжают его поверхностный слой отрицательно. Возникает электростатическое притяжение между перешедшими в раствор катионами и поверхностью металлической пластинки. Это препятствует дальнейшему растворению металла. В системе устанавливается подвижное равновесие, которое характеризуется равными скоростями растворения металла и обратного осаждения его из раствора на поверхность металлической пластинки. [c.342]

    Изучение пространственного распределения ПЦ представляет принципиальный интерес. При выяснении особенностей кинетики и механизма реакций в твердой фазе, количественном сопоставлении скоростей реакций в жидкой и твердой фазах, и т. д. в первую очередь необходимо учесть реальное распределение активных центров по объему. В твердых телах (а иногда и в достаточно вязких жидкостях) вследствие замораживания трансляционной подвижности пространственное распределение ПЦ может отражать либо гетерогенность распределения молекул, из которых образуются активные центры, либо гетерогенный характер процессов, приводящих к образованию радикалов. Начальная гетерогенность может возникнуть из-за макро- или микроскопического разделения фаз при кристаллизации, скопления дефектов, сферо-литной структуры полимеров и т. п. Причиной гетерогенного механизма образования активных центров является, например, зарождение их в приповерхностном слое и трековые эффекты при радиолизе. Представления об ионизации Б треках лежат в основе теории процессов радиолиза. Размеры и геометрия областей, в которых происходит ионизация, зависят от энергии и массы ионизирующей частицы, однако в любом случае образующиеся ионы или возбужденные молекулы распределены небольшими группами или роями вдоль пути ионизирующей частицы. Если стабилизирующиеся вторичные активные центры (радикалы и др.) образуются непосредственно в результате диссоциативной ионизации или рекомбинации первичных ионов, то их пространственное распреде- [c.201]

    Теория, рассмотренная в разд. В, полезна для понимания хроматографического процесса и предсказания ряда условий разделения. Она не в силах, однако, объяснить хорошо известный факт, что число тарелок р зависит от скорости течения, а также тот факт, что р зависит от коэффициента распределения растворенного вещества между двумя фазами. Трудно принять такую физическую модель, в которой движение жидкости (или другой подвижной фазы) состоит из серии скачков. В ней предполагается, что жидкость остается в одном слое колонки (или тарелке ) на достаточно долгое время для достижения равновесия с неподвижной фазой, затем мгновенно передвигается в следующую тарелку , и процесс повторяется сначала. [c.161]

    Пусть в конической камере (рис. 12) находится какое-то определенное количество мелкозернистого материала, через который фильтруется поток жидкости. Постепенно увеличивая скорость потока, можно заметить, что при определенном критическом значении скорости слой переходит в подвижное состояние. При дальнейшем увеличении скорости степень раздутия кипя-1 щего слоя возрастает и неравномерность распределения частиц по высоте камеры увеличивается. На рис. 13 показан кипящий слой коксовой мелочи, полученный Н. И. Сыромятниковым в опытах СО стеклянной моделью при трехкратной степени раздутия слоя. [c.36]

    Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую), а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвижной фазы поступает в хроматографическую колонку. При контакте, с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемо-стью или растворимостью. Вследствие непрерывного движения подвижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же егО часть продвигается дальше в направлении потока и вступает всу взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы толькО при достаточно медленном движении подвижной фазы. Поглощенные неподвижной фазой компоненты смеси не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке потребуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсор-бируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колонке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компоненты. [c.8]


    Применение больших скоростей перемещения зоны приводит к снижению эффективности разделения. Когда коэффициент распределения меньше единицы, перемещение зоны должно быть достаточно медленным, чтобы примеси из кристаллизующейся части зоны успели переместиться и продиффуидировать в плавящийся слой. Кроме того, скорость зоны должна обеспечивать возможность ориентации молекул основного компонента так, чтобы способствовать росту кристаллической решетки. Наконец, перемещение зоны не должно быть слишком быстрым еще и потому, что в таком случае образовавшиеся кристаллы основного компонента могут захватывать во время их быстрого роста жидкость с повышенной концентрацией примеси. При высокой степени очистки на подвижной поверхности раздела жидкой и твердой фаз должны образовываться крупные кристаллы правильной формы. Когда кристаллизуются металлы из расплава, их атомы образуют элементарную решетку. Так как каждый атом имеет сферическую форму, то как только центр его займет удобное положение, атом может располагаться независимо от ориентации. Поэтому при выборе скорости передвижения зоны для металлов важным фактором является диффузия примеси из фронта кристаллизации. Теория диффузии в применении к зонной очистке разработана рядом ученых (Бауртон, Прими, Шлифтер, 1953 Пфанн, 1958)  [c.39]

    Наблюдается три вида течеиия разбавленных структурированных систем 1) ограниченное слоем (часто узким), прилегающим к подвижному цилиндру прибора (см. раздел 1) 2) охватывающее всю жидкость, но распределение скоростей и иапряжеиий существенно неньютоновское (некуэттовское течение) 3) течение всей жидкости имеет характер близкий к куэттовскому, иногда с отдельными временными отклонениями от него. [c.286]

    Электрофорез [1—3]. Движение заряженных частиц под влиянием внешнего электрического поля и находящихся во взвешенном состоянии в неподвижной жидкости называется электрофорезом. Это явление можно представить себе следующим образом. Частицы жидкости окружены двойным электрическим слоем. При приложении электрического поля распределение зарядов частиц в дуффузном слое нарушается вследствие смещения их по отношению к частице и непрерывного обмена ионными атмосферами вокруг частиц. В то же время сами частицы под действием электрического поля движутся по направлению противоположно заряженного полюса. Измерив скорость движения частиц и зная градиент потенциала приложенногс электрического поля, можно рассчитать электрофоретическую подвижность частиц С/эф (так назьшают путь, проходимый частицей за одну секунду в поле с градиентом потенциала 1 в/см). Тогда [c.168]

    Для работы с загрязненными газами и жидкостями применяют аппараты с подвижной насадкой, сравнительно легкие элементы к-рой поддерживаются потоком газа во взвешенном (псевдоожиженном) состоянии. Положение слоя взвешенных элементов фиксируется ниж. (опорной) и верх, (ограничительной) решетками. В аппаратах с неск. слоями насадки верх, решетка нижерасположенного слоя служит опорой для вышеразмещенного. Высота слоя насадки в неподвижном состоянии (без газового потока) 0,2-0,3 м, расстояние между решетками 1-1,5 м. Для улучшения контакта между газом и жидкостью в аппаратах большого диаметра пространство между решетками разделяют вертик. перегородками на прямоугольные или секторные отсеки. С целью улучшения распределения жидкости и З еньшения брызгоуноса предложены конич. аппараты, в к-рых сечение возрастает по ходу газа. Аппараты с подвижной насадкой могут функционировать при больших скоростях газа без захлебывания и обеспечивают более высокий коэф. массопередачи, однако характеризуются большим гидравлич. сопротивлением, значит, брызгоуносом и износом насадочных тел. [c.173]

    При подборе соответствующих условий на выходе из колонки появляются поочередно чистая подвижная фаза и ее смесь с одним из компонентов анализируемой пробы. Разделение в данном случае основано на различном распределении молекул разделяемых компонентов в движущейся газовой и неподвижной жидкой фазах, между которыми для каждого вещества анализируемой смесп в колонке устанавливается динамическое равновесие. Скорость движения хроматографической зоны обратно пропорциональна константе распределения (К) содержащегося в ней соединения между газовой и жидкой фазами. Вследствие этого хорошо удерживаемые жидкостью компоненты передвигаются вдоль слоя неподвижной фазы медлепее, чем плохо сорбируемые. [c.73]

    В гомогенных системах катализатср находится в виде отдельных молекул, распределенных между молекулами реагентов, причем оба являются или газом или жидкостью и одинаково подвижны. Законы термодинамики и кинетики очень успешно применяются к гомогенным системам, но не охватывают случаев, когда система имеет несколько состояний агрегации, получающихся вследствие комплексообразсвания, препятствующего равномерному и полному распределению. Состояние веществ на границе раздела и внутри фаз различно по концентрации и подвижности, а также по реакционной способности молекул. Чтобы произошла каталитическая реакция, необходим молекулярный обмен между границей раздела фаз и внутренней частью фазы. К химическому процессу превращения молекул в пограничном слое присоединяется физический процесс диффузии. Превращение компонентов системы в тонкой пленке нельзя измерить непосредственно поэтому измеряют изменение количества веществ во внутренней фазе. В гомогенном катализе катализатор находится в тесной смеси с реаги-руюпщми компонентами и действует своей массой, так что во многих случаях константа скорости реакции изменяется прямо пропорционально концентрации катализатора. В таких системах эффективность различных катализаторов можно сравнивать по величинам констант скоростей реакции, так как по ним возможна точная оценка относительной активности. -  [c.175]

    Наиболее типичный пример ионообменной хроматографии — разделение ионов в соответствии с их сродством к ионообменным группам. Самый старый метод фронтальной хроматографии обладает лишь немногими преимуществами. Лучшие результаты дает вытеснительная хроматография, однако наиболее эффективен метод проявительной хроматографии. Небольшое количество смеси ионов В и С, обладающих большим сродством к иониту, вводят в колонку вместе с ионами А, обладающими малым сродством к иониту. Величина вводимой пробьЕ пренебрежимо мала по сравнению с полным объемом колонки Элюирование ведут ионами А. Разделение определяется коэффициентами распределения Ка Щ и /С<г(С) или фактором разделения /Сй(В)/Х<г(С). Коэффициент распределения — это отношение концентраций ионов в ионообменной фазе и в растворе, отнесенное к миллилитру раствора и к грамму (сухой массы) или миллилитру ионообменной фазы. При слишком большом Ка, например более 30, хроматографические зоны расширяются и увеличивается время, необходимое для разделения.. Этого можно избежать, меняя в процессе элюирования дискретно или непрерывно концентрацию элюента (градиентное элюирование). Оптимальное разделение достигается в равновесных условиях, поэтому благоприятное влияние на процесс оказывает уменьшение размера зерен ионита, повышение температуры и оптимальная скорость потока подвижной фазы (все эт меры способствуют достижению равновесного состояния). Размер зерен можно уменьшать лишь до некоторого предела, который зависит от механической прочности слоя ионита причем требования к стабильности формы зерен особенно жестки, когда элюент пропускают через колонку под действием избыточного давления (иногда до нескольких десятков атмосфер). Степень сшивки ионитов должна быть достаточно высокой, чтобьь их объем оставался неизменным, или это должны быть макропористые иониты. Благоприятное действие оказывает увеличение скорости потока элюента в колонке, способствующее более равномерному распределению пленки жидкости по поверхности зерен ионита, но слишком сильное увеличение скорости может увести систему из оптимального равновесного состояния. Величины коэффициентов распределения зависят от состава элюента, и их можно регулировать в значительных пределах, добавляя комплексообразующие компоненты например, при разделении лантанидов с этой целью используют органические оксикислоты. [c.243]

    Реальный сорбент представляет проницаемую для жидкости или газа дисперсную среду, в которой беспорядочно расположены неравноценные сорбционные центры — активные связи, способные Захватывать атомы, молекулы или ионы из движущейся через сорбент подвижной фазы. В процессе движения через хроматографическую колонну каждая из частиц последовательно сорбируется и десорбируется. Среднее число актов сорбцри на единицу длины колонки зависит от суммарного действия физико-химических и геометрических факторов, определяющих кинетику, статику и динамику сорбции. Время нахождения молекулы в сорбенте — случайная величина для разных частиц она различна. Расположение центров сорбции имеет хаотический характер, а сам акт сорбции — случайный процесс для каждой частицы. Движение частиц имеет также хаотический характер. Поле скоростей потока в слое сорбента имеет также статистическое распределение. Все эти статистические факторы показывают, что даже в случае приближения к условиям сорбционного равновесия распределение веществ на границах хроматографических зон будет иметь размытый характер. [c.44]

    Подвижность пены и ее структура зависят от скорости газового потока. Изучение структуры межфазной поверхности дисперсных систем газ — жидкость, образующихся в пенных аппаратах, с использованием киносъемки показало, что в зависимости от скорости газа возможны три гидродинамических режима [10] газ распределен в жидкости, газ и жидкость относительно равномерно распределены по объему слоя (обращение фаз) и жидкость распределена в газе. Каждому из указанных режимов соответствуют определенные и довольно уйсие пределы скоростей газа в полном сечении аппарата. В ходе работы аппарата основные параметры слоя пены (высота, поверхность контакта фаз, нерепад давления) [c.128]

    Толщина диффузионного слоя 6 зависит от степени подвижности (или перемешивания) расплава. Ее величина будет тем меньше, чем сильнее двилсение жидкости. Поскольку б зависит также от коэффициента диффузии, ее величина может быть разной для разных элементов даже для одной и той л е поверхности раздела. Она в небольшой степени мол ет меняться в зависимости от скорости роста кристалла. Немногочисленные экспериментальные данные (см., например, I [32]) по магматическим системам показывают, что б имеет величину порядка 10 мкм для экспериментов, коэффициенты распределения которых далеки от 1. Соответственно при величине I) порядка 10 см -с отношение будет около 10 см -с. Кривые, показывающие из- [c.207]


Смотреть страницы где упоминается термин Подвижной слой жидкости распределение скорости: [c.534]    [c.81]    [c.17]    [c.95]    [c.332]    [c.123]    [c.123]   
Центрифуги и сепараторы для химических производств (1987) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Распределение жидкости

Распределение жидкость-жидкость

Распределение по скоростям

Скорость слоем



© 2025 chem21.info Реклама на сайте