Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Красители титаном III

    Титан входит в состав легких и прочных сплавов для авиационной и ракетной техники. Оксид (IV) титана применяют в радиоэлектронике, производстве красителей и пластических масс. Нитрид титана TiN используют для шлифовки драгоценных камней вместо порошкообразного алмаза. [c.411]

    Широко известное регулирование свойств кристаллизующихся полимеров при помощи зародышеобразующих добавок [5, 7, 360—375] также имеет отношение к рассматриваемой проблеме — зависимости структуры и свойств полимера от типа поверхности субстрата. В качестве зародышеобразующих добавок испытано несколько сот различных соединений, главным образом органических, Наиболее эффективными оказались некоторые красители (индиго, ализарин), соли (салициловокислый висмут, щавелевокислый титан, уксуснокислый кадмий, фосфорнокислый свинец), [c.140]


    Метод количественного определения хиноидных красителей, в структуре которых содержится хиноидное ядро (например, трифенилметановых красителей—фуксина, родамина, малахитового зеленого и др., а также красителей типа метиленового голубого), основан на восстановлении хиноидного ядра трехвалентным титаном. [c.340]

    В производствах органических продуктов и красителей большое место занимают процессы хлорирования органических соединений. Для их аппаратурного оформления широко используется титан. Так, в производстве 1-хлорантрахинона в течение многих лет эксплуатируются титановые хлораторы, работающие в среде 1%-ной НС1, содержащей натриевую соль 1-сульфокислоты антрахинона и хлор при 97 °С [549]. [c.216]

    Имеется указание, что фторидные комплексы тантала из 10— 12 н. растворов серной кислоты извлекаются бензолом в виде тройных комплексов с бутиловым эфиром родамина С или с родамином 6Ж- Такое извлечение тантала обоими красителями является высокоизбирательным в указанных условиях ни один из элементов, способных к образованию фторидных комплексов (титан, ниобий, цирконий и др.), не переходит в сколько-нибудь значительной степени в экстракт . [c.350]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Для определения бора использована реакция образования комплекса аниона тетраборной кислоты с красителем бриллиантовым зеленым и экстрагирования его бензолом [145]. Окраску ослабляют металлы, образующие устойчивые фторидные комплексы, в частности железо, алюминий, титан, цирконий. Влияние этих элементов можно устранить повышением концентрации фтористого аммония (концентрация фтористого аммония должна быть не более 0,8 г-э/св/л). [c.70]


    Титан, цирконий и гафний используются как легирующие добавки к специальным сплавам. Они улучшают механические свойства, повышают пластичность, твердость и коррозионную стойкост 5 сплавов. Порошки титана, циркония и гафния используются как поглотители газов (геттеры). Более легкий по сравнению с другими -металлами титан широко применяется также для изготовления турбинных двигателей, корпусов самолетов и морских судов. Особо чистый цирконий используется в качестве конструкционного материала для термоядерных реакторов. Гафний обладает исключительной способностью к захвату нейтронов стержни из этого металла применяются в ядерной технике. Оксиды циркония, титана и гафния находят применение в качестве материалов дл>1 изготовления тугоплавких и химически стойких тиглей и электродов МГД-генераторов. Ti02 используется в качестве красителя (титановые белила). Из карбидов титана и циркония изготовляют шлифовальные круги. Титанат бария (ВаТЮз) широко исполь.-зуется в пьезоэлектрических датчиках. [c.514]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    Восстановление хлористым оловом и соляной кислотой имеет большое значение для установления строения азокрасителей. Для большинства азокрасителей реакция состоит в расщеплении азогруппы и в образовании двух молекул первичного амина. Для проведения реакции к теплому водному раствору красителя прибавляют хлористое олово в концентрированной соляной кислоте. По обесцвечивании раствора выделяют продукты реакции ло одному из обычных способов, наиболее пригодному в том или ином случае, а именно перегонкой с паром, фильтрованием, экстрагированием эфиром или превращением в производные хиноксалина К другим восстановителям, пригодным для этой реакции, относятся цинковая пыль и водный аммиак, цинковая пыль и водный раствор едкого натра, хлористый титан. [c.464]

    Нужно отметить, что те же качественные выводы можно получить из обычных положений теории органических красителей. Действительно, всякое уменьшение сдвига л-электронов делает цепь сопряжения менее возбудимой, т. е. приводит к смещению Лмакс в сторону более коротких волн. Крупный ион циркония слабо притягивает свободные электроны, находящиеся в конце сопряженной цепи аниона, поэтому спектр поглощения комплекса циркония мало отличается от спектра поглощения свободного аниона фенилфлуорона (XzrR—A-R-). Радиус иона титана, меньше, чем радиус иона циркония поэтому титан сильнее притягивает электроны и Ямакс титанового комплекса более сдвинута в коротковолновую часть по сравнению с циркониевым комплексом и т. д. [c.86]

    При достаточном избытке роданида диантипирилметана образуются наиболее интенсивно окрашенные комплексы. Высоко чувствительна также реакция образования тройных комплексов в системе титан — роданид — диантипирилметан для этого комплекса б42о 6-10 . По интенсивности окраски эти соединения соответствуют комплексам металлов с органическими красителями,, хотя хромофором здесь, несомненно, является ион металла. [c.343]

    Как видно из данных, представленных на фиг. 1—4, наиболее высокую коррозионную стойкость во всех технологических стадиях производства взятых красителей проявляет титан. Сталь XI8H10T достаточно стойка в условиях синтеза красителя Прямой диазо-зеленый Ж и Прямой диазо-бордо светопрочный Сив стадиях диазотирования метаниловой кислоты и моноазокрасителя. [c.107]

    Наибольшее техническое применение титан находит себе в качестве красителя, частью в виде более или менее чистой ТЮ , частью в виде смесей, содержащих BaSO , ZnO, а ранее содержавших также и фосфаты. Применяется в масляных красках, типографских красках, в лаках, нитролаках, клеенке, линолеуме, резине и искусственных массах. Предложено прибавлять TiO.2 также к литопону и свинцовым белилам, чтобы [c.452]


    После всестороннего сопоставления аналитических свойств красителей можно сделать заключение, что наибольший интерес в качестве реагентов представляют натриевая соль 2,6-дихлор-диметилоксифуксондикарбоновой кислоты (реагент III) и 2,6-дихлордиметилсульфооксифуксондикарбоновая кислота (реагент II) они дают наиболее контрастные окраскп и чувствительные реакции. Водные растворы этих красителей окрашены в желтый цвет, а продукты взаимодействия их со многими катионами имеют глубокую и интенсивную окраску с магнием, торием, ванадилом, алюминием, титаном — фиолетовую с никелем, бериллием, церием, медью, уранилом — синюю и т. д. Чувствительность этих реакций составляет около 0,05— [c.104]

    Большой практический интерес представляют реакции изучавшихся красителей с алюлшнием, титаном, бериллием, медью, торием, уранилом. [c.110]

    Описан ряд катал.1метрпческих методов определения вольфрама. Реакция окислепия иодида пероксидом водорода применена для определения вольфрама методом фиксированной концентрации [79]. Восстановление красителя основного синего К титаном (III), катализируемое вольфрамом (VI), фиксируют спектрофотометрическим методом при 445 нм [80]. [c.243]

    Содержание влаги не более 20% примесей, нерастворимых в 96%-ном этиловом спирте, не более 5%. Концентрацня красителя (в пересчете на сухой продукт), определяемая взаимодействием с треххлористым титаном, не менее 80%. [c.255]

    Краситель Виктория голубой В ( 33H32N3 I) восстанавливается титаном (III) с образованием бесцветных продуктов по реакции  [c.173]

    Так, например, содержание азокрасителей, трифенилметановых, индигоидных красителей и др. можно определить титрованием соответствующими реактивами (например, треххлористым титаном, хлористым оловом, марганцовокислым калием и др.)- [c.242]

    Титан широко применяется в анилинокрасочной промышленности, для которой характерны очень сложные по составу технологические среды, содержащие, как правило, органические соединения. Кроме того, в этой отрасли промышленности предъявляются высокие требования к чистоте конечного продукта. К ним относятся производства 2,4-динитроанилина для получения азокрасителей и пигментов, кубовых красителей желтых марок, дисперсных красителей и т. д. Наиболее металлоемкое оборудование используется в процессах диазотирования и азосочетаний, для которых раньше практически не было надежных конструкционных материалов [186]. [c.216]

    Следует отметить, что применение ускоренных методов анализа приводит иногда к необходимости корректировать условия определения элементов (значения параметров аналитического процесса) по сравнению с принятыми в строгих методах таким образом, чтобы свести до минимума мешающее влияние элементов, отделение которых не предусмотрено прописью анализа. Например, оптимальным для определения тантала с родаминовыми красителями или бора с кристаллическим фиолетовым в отсутствие мешающих элементов является минимальное содержание фтор-иона, еще обеспечивающее прямолинейность градуировочного графика однако присутствие в анализируемом растворе компонентов, образующих фторидные комплексы (титан, цирконий и др.), вынуждает увеличивать концентрацию фтор-иона в водной фазе холостой опыт, а следовательно и Гмин(а), возрастает [23, 24, 35]. При определении рения с родаминами с целью уменьшения влияния мешающего влияния вольфрама, образующего прочные соединения с красителем, вв.одят избыток последнего, что также понижает чувствительность определения [c.112]

    При определении бора в материалах постоянного состава (сталь, металлический титан, цирконий, уран, окись бериллия) зависимость коэффициента экстракции бора от концентрации основного компонента пробы в растворе может быть элиминирована. Для этого при построении градуировочного графика в растворы вводят заданные количества соответствующего элемента, а при выполнении анализа сохраняют концентрацию этого элемента, принятую при построении калибровочной кривой. Этот прием не может быть применен при анализе многокомпонентных проб переменного состава (руд и других проб минерального сырья) здесь приходится выбирать величину навески и разведение таким образом, чтобы изменения К , обусловленные различиями в составе проб, не превышали допустимые пределы. Это условие, а также малые значения констант распределения фторборатов красителей ограничивают чувствительность определения бора в таких пробах. При очень малых значениях Яр фторбората красителя (например, определение кристаллическим или метиловым фиолетовым) создается парадоксальное положение, когда мероприятия, направленные на понижение порога чувствительности определения gмип, приводят к возрастанию порога чувствительности анализа Х ин и наоборот. Действительно, значение мин (во всяком случае его инструментальная составляющая) уменьшается с ростом Кд бора при значениях А р, равных 0,1—0,2, К , резко возрастает с уменьшением отношения в/Гэ. Но объем экстрагента не должен превышать емкость самой большой (/ = 5 см) кюветы фотоколориметра, равную обычно 25 мл (больший Уд не может быть полностью использован при измерении), а уменьшение объема водной фазы посредством концентрирования раствора навески приводит к понижению Кд вследствие солевого эффекта [мешающее влияние типа (вд)]. В конечном счете оказывается выгодным пойти на уменьшение Кд и возрастание ё мин но использовать большую эффективную навеску. Это положение иллюстрируется данными табл. 32 значение ин в условиях опыта 6 Ув1Уа = 1) приблизительно в 3 раза выше, чем в условиях опыта 5 ( в/ э = 0,2), однако объем аликвоты водной фазы, отобранной для определения (а следовательно, и содержащаяся в ней часть навески пробы), в первом случае в 10 раз выше, чем во втором, что обеспечивает уменьшение Х ин более чем в три раза [112, 35]. [c.124]

    В шредыдущей главе было отмечено, что органические реактивы, содержащие ОН-группы, можно разделить на две группы. Одна из них рассмотрена в гл. 14. К другой группе принадлежат соединения, которые представляют собой -также многоатомные фенолы или оксикислоты, но являются окрашенными, т. е. поглощающими свет в видимой части спектра. При взаимодействии таких реактивов со многими ионами образуются интенсивно окрашенные соединения, которые иногда называются лаками в связи с их применением в технологии крашения. Несмотря на высокую чувствительность таких реакций, применение указанных выше реактивов довольно ограничено вследствие некоторых недостатков их, особенно сказывающихся при колориметрическом анализе. Прежде всего необходимо отметить недостаточную специфичность реакций, вследствие чего заметное влияние производят многие посторонние ионы. Красители данной группы, как и реактивы, описанные в гл. 14 (многоатомные фенолы и оксикислоты), образуют комплексные соединения с ионами очень многих металлов. Однако комплексы с обычными многоатомными фенолами и оксикислотами окрашены лишь у небольшого числа катионов (железо, титан и др.), так что образование соединений со многими катионами требует только повышенного расхода реактива, но не отражается на точности колориметрического определения. Между тем при образовании комплексов металлов с красителями, содержащими ОН-группы, всегда происходит изменение окраски, так как окрашивание связано с деформацией молекулы реактива. Специфичность отдельных элементов по отношению к рассматриваемым реактивам- выражается в различной прочности комплексов, в частности в образовании их при различных значениях pH раствора, причем изменение окраски раствора при данной величине pH указывает на образование комплекса. Комплексные соединения реактивов данной группы с самыми разнообразными катионами часто имеют близкие спектры поглощения, [c.293]

    Методом восстановления анализируют нитрозо-, нитро- и азокрасители, красители с хиноидным строением и некоторые другие. В качестве восстановителей для азокрасителей рекомендуются растворы треххлористого титана Т1С1з, двухлористого олова ЗпСЬ и сернокислого ванадия УЯ04. Процесс ведут при небольшом нагревании в токе углекислоты. Нами в качестве восстановителя рекомендуется сернокислый ванадий. Для восстановления триарилметановых и хинониминовых красителей, рекомендуется треххлористый титан. [c.349]

    Извлеченньи и слой органического растворителя хло )гал-лат родамина С флуоресцирует под де11ствпем ультрафиолетового света. Экстракция проводилась из 6 н. солянокислого раствора смесью бензола и бутилацетата в отношении 4 1. Для восстановления избытка красителя и снижения влияния примесей в раствор вводился треххлористьп" титан. [c.80]

    Спектры ЭПР азиновых, оксазиновых и тиазиновых красителей Фиолетового Лаута ( IX), Метиленового синего (СХ), Метиленового зеленого ( I52020, Основной зеленый 5) Галлоцианина ( I 51030, Протравной синий 10) и Сафранина В экстра, снятые после облучения красителей рентгеновскими лучами в течение 5—10 мин в концентрированной серной кислоте в присутствии этилового спирта или бензойной кислоты, показывают, что красители образуют те же парамагнитные частицы, которые получаются при восстановлении хлористым титаном идет протонирование центрального атома азота, а неспаренный электрон делокализуется между серой (или кислородом) и азотом. Строение ионов, полученных при радиолитическом восстановлении Фиолетового Лаута, можно представить резонансными структурами СХП и XIII [116]  [c.149]

    Метиленовый голубой, поступающий в продажу в виде двойной соли с хлористым цинком, применяется для крашения, а в виде солянокислой соли, не содержащей цинка, — для ситцепечатания. Солянокислая соль 99,7%-ной концентрации может быть получена обработкой карбонатом натрия продажной двойной соли с хлористым цинком, кристаллизацией из разбавленной соляной кислоты и перекристаллизацией из спирта. Благодаря яркости и чистоте оттенка Метиленовый голубой широко применяется для крашения и печати хлопка по таннину или по протраве типа Катанола и в меньшей степени для крашения шелка, несмотря на малую прочность к свету, характерную для класса основных красителей. Лаки из Метиленового голубого ценятся не только в текстильной, но и в других отраслях промышленности. Краситель не обладает сродством к непротравленному хлопку, но оксицеллюлоза и целлюлоза, содержащая минеральные вещества или связанную кислоту, окрашиваются этим красителем, и абсорбция Метиленового голубого в стандартных условиях может быть использована для качественного и количественного определения изменений в молекуле целлюлозы. Из многочисленных основных красителей, обладающих подобным свойством. Метиленовый голубой выбран для этой цели именно потому, что он может быть легко получен в аналитически чистом виде. Метиленовый голубой является окислительно-восстановительным индикатором и может быть использован, например, при титрованиях хлористым титаном и в иодометрии вместо крахмала. Концентрация Метиленового голубого может быть определена прямым титрованием хлористым титаном. Другой метод основан на образовании нерастворимого бихромата Метиленового голубого, который может быть взвешен. Можно определить Метиленовый голубой также и объемным методом обработкой его избытком бихромата калия и определением этого избытка с помощью иодистого калия [c.908]

    Можно осуществить циклизацию антримидов в карбазолы кипячением их в подходящем растворителе (например, в о-дихлорбензоле) с четыреххлористым титаном. Избыток хлористого титана отгоняют, остаток переводят в куб, продувают воздухом и окисляют гипохлоритом. Этим способом из 1,2 -диантримида получают оранжево-красный карбазоловый краситель. [c.1034]


Смотреть страницы где упоминается термин Красители титаном III : [c.581]    [c.347]    [c.312]    [c.59]    [c.581]    [c.33]    [c.669]    [c.282]    [c.110]    [c.322]    [c.327]    [c.869]    [c.322]    [c.327]    [c.136]    [c.603]    [c.1163]   
Титриметрические методы анализа органических соединений (1968) -- [ c.25 , c.468 , c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление красителя Виктория голубой В титаном (III) (определение ванадия, молибдена, вольфрама, урана и осмия)

Восстановление красителя малахитового зеленого титаном (III) определение молибдена (VI) и вольфрама



© 2024 chem21.info Реклама на сайте