Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, определение примесей

    Для выбора оптимальных условий определения была исследована степень влияния элемента основы и сопутствующих примесных элементов, подобраны экстрагенты, дающие возможность не только сконцентрировать определенную примесь в меньшем объеме раствора, но и повысить молярный коэффициент погашения вследствие образования в органической фазе соединений с новыми свойствами. Кроме того, усовершенствованы способы измерения оптической плотности растворов в результате использования специальных кювет малого объема с большой длиной оптического пути. Все это позволило не только поднять точность определения, но в ряде случаев также повысить и чувствительность определения до 10 %, которая для химических методов определения примесей в металлах и их соединениях является очень высокой. Такие методы анализа предложены, например, для определения примесей ртути и никеля в индии, железа в таллии, фосфора в галлии, мышьяке и их соединениях, включая арсенид галлия. [c.12]


    Определению аммиаката меди мешают ионы металлов, образующие окрашенные аммиакаты, например, кобальт и никель, или труднорастворимые гидроксиды железа, свинца, алюмнния. Для устранения мешающего действия элементов приме-ну[ют маскирующие комплексообразователи. [c.69]

    Схема метода. Примесь меди в никеле может составлять от нескольких сотых долей процента до 0,5%. Для определения меди навеску никеля растворяют в азотной кислоте и выделяют медь из кислого раствора на платиновом катоде, применяя в качестве анода (внутреннего электрода) металлический алюминий. [c.210]

    Для определения кобальта в алюминии берут две навески металла по 1 г, растворяют каждую в 20 мл едкого натра, прибавляют посте пенно раствор лимонной кислоты до pH 8. Раствор переносят в мер ную колбу емкостью 50 мл и доводят объем раствора водой до метки В стакан емкостью 50 мл переносят 10 мл приготовленного раствора добавляют 2 мл раствора 2-нитрозо- 1-нафтола, нагревают почти до ки пения, охлаждают и переносят раствор в делительную воронку емко стью 50 мл. К этому раствору приливают 5 мл хлороформа, оставляют стоять 15 мин и экстрагируют соединение кобальта в течение 20 мин на механическом вибраторе. Водный слой отбирают пипеткой (используя резиновую грушу). Для удаления избытка реагента хлороформный слой обрабатывают 5 мл щелочи в течение 20 мин, используя механический вибратор, затем промывают водой. Если имеется примесь железа, то его комплексное соединение разрушается раствором щелочи при удалении избытка реагента из хлороформа. Для разрушения комплексных соединений никеля и меди, которые могут также содержаться в качестве примесей, раствор хлороформа промывают 5 мл соляной кислоты в течение 5 мин и снова водой, используя механический вибратор. Так как при этой операции освобождается некоторое количество реагента, которое входило в комплексные соединения меди и никеля, то еще раз раствор хлороформа промывают последовательно раствором щелочи (1 мл) и водой (5 мл). Раствор хлороформа переводят в мерный цилиндр или градуированную пробирку, добавляют хлороформ до 5 мл и измеряют оптическую плотность раствора на спектрофотометрах при к 307 нм. Раствор сравнения готовят в условиях, указанных на стр. 162. [c.164]

    В данной главе автор не предполагает обсуждать какие-либо конкретные аналитические методики, ибо беглый взгляд на библиографию показывает, что уже и сейчас их слишком много во всяком случае, краткие обзоры вряд ли имеют большую ценность, поскольку почти всегда приходится прибегать к изучению первоисточников. Поэтому в настоящей главе будут описаны лишь различные направления, в которых можно использовать ионообменные смолы для химического анализа. Однако прежде чем перейти к делу, следовало бы мимоходом подчеркнуть, что всякий аналитический метод, разработанный с помощью ионитов, обычно может найти себе промышленное применение без стадии опытной установки. Так, например, если на колонке высотой 25 мм можно отделить небольшую примесь никеля к микрограммовым количествам кобальта, то можно заранее утверждать с определенной степенью надежности, что этот же процесс можно осуществить в масштабе сотен килограммов с колонкой, скажем, 3 м высотой и 300 мм диаметром. В этом отношении ионообменные процессы отличаются от классических химических операций, путь перевода которых из лабораторного масштаба в крупнопромышленный усеян ловушками для неосторожных. [c.59]


    Определение Л эф затруднено из-за отсутствия в работе структурных характеристик катализатора (удельной поверхности, распределения пор по радиусам, пористости и др.). Примем, что диффузия протекает в кнудсеновском режиме, пористость катализатора 0 = 0,5 и коэффициент извилистости 6 = 2. Так как удельная поверхность никель-кизельгурового катализатора мала, то средний радиус пор принимаем равным = 5-10 м (500 А). Тогда имеем [см. уравнение (1.31)[ [c.186]

    Описан [50] эффективный прибор для пирогидролиза при определении фтора в пробах, из которых его трудно выделить дистилляцией в форме кремнефтористоводородной кислоты. Реакционная камера сделана из никеля. Трубчатая печь служит в качестве перегревателя для пара и нагревателя для реакционной камеры. При отсутствии мешающих анионов летучих кислот фтористоводородную кислоту, выделяющуюся из 30 мг фторида, определяют прямым алкалиметрическим титрованием. Для фотометрического определения фтористоводородной кислоты, выделяемой из анализируемых проб, содержащих микрограммовые количества фтора, применяют торон. При определении около 30 мг фтора точность находится в пределах 1%. — Прим. ред. [c.263]

    При определениях 5-1С % примеси никеля в алюмоаммонийных квасцах с целью увеличения навески анализируемой пробы для необходимого повышения чувствительности определения предварительно отделяли от основной массы препарата примесь никеля. Для этого брали навеску алюмоаммонийных квасцов 50 г и растворяли в стакане при нагревании в 50 мл воды. Затем прибавляли 1 мл соляной кислоты уд. в. 1,19, 0,05 мл перекиси водорода и кипятили 1 — [c.39]

    Любая примесь или дефект кристаллической решетки приводит к появлению новых полос в спектре поглощения. В тех случаях, когда эти полосы не перекрываются характеристическими полосами поглощения кристалла, его прозрачность на определенном участке спектра может существенно снижаться [10]. Кислородсодержащие анионы (ОН , SO , NOJ, NO2, СО ) в оптических монокристаллах галогенидов щелочных металлов даже при массовой доле создают заметные полосы поглощения в ИК-области [11] и существенно снижают термическую стойкость монокристаллов, применяемых в качестве окон газовых лазеров [12]. В материалах волоконной оптики массовая доля красящих примесей (хром, никель, кобальт, медь, железо и др.) не должна превышать 1 10 -1 10 [13]. При выращивании монокристаллов из расплава в инертной атмосфере или вакууме присутствующие в исходном сырье органические примеси подвергаются пиролизу, образуя включения углерода, которые служат рассеивающими центрами. [c.10]

    Метод определения никеля был предложен Л. А. Чугаевым в 1905 г., что указывается во всех руководствах по неорганическому качественному и количественному анализу. — Прим. перев. [c.158]

    Железо. Железо — один из важнейших микроэлементов и наиболее часто встречающаяся примесь в технических материалах. Существующие методики позволяют в некоторых случаях определять железо при концентрации 10" мкг мк, однако этим определениям часто мешает присутствие в анализируемом объекте соединений элементов — соседей железа по периодической системе кобальта, никеля, хрома др. [c.74]

    Основные результаты работы, проводившейся нами совместно с Давыдовой, были кратко опубликованы [29, 30]. Опыты проводились в циркуляционной квазистатической системе, в вакуумной установке, аналогичной описанной выше, также на образцах восстановленного никеля. ]Методика заключалась в адсорбции определенных количеств циклогексана при температурах 30—100° С на образцах никелевого катализатора (активность которого в отношении реакции (V) была снижена путем предварительной обработки циклогексаном, содержащим примесь пиридина). Затем система замораживалась до —196° С и на катализаторе с адсорбированным на нем циклогексаном проводилась реакция (V). Давление водорода при этом было 20 мм рт. ст., скорость реакции контролировалась измерением теплопроводности смесей о- и р-Нд. [c.140]

    Антифрикционные свойства. Зависимость коэффициентов трення от величины нагрузки при трении стали по бронзе никель фосфорному н хромовому покрытиям приведена на рис 6 Как видно из приведенных кривых, возрастание коэффициента трения для никель фосфорных покрытий наблюдается прн повышении нагрузки свыше 6 О, а для хромовых покрытий после 6,5 МПа Довольно низкие коэффициенты трения ннкель-фосфорных покрытий объясняются, в частности, их хорошей прирабатываемостью Приме нение смазочного материала существенно снижает силу трения Важное значение имеет определение максимальных нагрузок до заедания, выдерживаемых никель фосфорными покрытиями Эти характеристики получены при использовании машины трения 77МТ 1 в условиях возвратно-поступательного движения при смазке маслом АМГ 10 и комнатной температуре Величина предельных нагрузок до заедания выдерживаемых никель фосфорными покрытиями существенно возрастает после часовой термообработки в интервале температур 300— 750 °С и доходит до 42 МПа [c.15]


    Сплавы, легированные алюминием, могут работать в воздушной среде, вакууме и атмосферах, содержащих примесь серы и сернистых соединений. Их используют в основном для изготовления нагревателей промышленных электропечей. Сплавы, легированные кремнием, жаростойки в воздушной и азотсодержащих средах. Они применяются для изготовления нагревателей промышленных и лабораторных электропечей, бытовых приборов и других аппаратов. Наличие нескольких марок сплавов в составе каждой группы объясняется особенностями поведения нагревателей в эксплуатации, разным уровнем технологической пластичности сплавов, дефицитностью никеля, а также традицией применения сплавов в серийных конструкциях электропечей и электронагревательных устройств. Наиболее важными эксплуатационными характеристиками сплавов являются предельная рабочая температура, срок службы и величина удельного электрического сопротивления. Понятие предельной рабочей температуры не является строго определенным. Это рекомендуемая максимальная температура, при которой еще обеспечивается экономически эффективный срок службы нагревателей толстого сечения. Значения предельной рабочей температуры, указываемые в справочниках и маталогах, являются в определенной степени условными, и вопрос о сравнительной стойкости сплавов-аналогов может быть надежно решен пока только путем испытания нагревателей в одинаковых условиях. Ниже приведены предельные рабочие температуры ( 7др ) сплавов в различных средах. [c.107]

    Лингейн [108] предложил полярографйческуро методику для определения свинца, меди, олова, никеля, цинка с приме-йе нием последовательного удаления примесей путем потенциостатического электролиза. Проблему одновременного определения таллия и свинца решил Мейтес [106], который применял сочетание полярографического и кулонометрического методов. Смит и Тейлор [42] удаляли свинец из растворов, содержащих ионы других металлов, путем осаждения его на ртутный катод с последующим повторным электролитическим растворением, завершающим анализ. [c.57]

    Исследования инфракрасных спектров адсорбированного этилена подтверждают подобного рода заключения, в особенности те, которые касаются разрыва молекулы на чистой поверхности никеля. Ассоциативная адсорбция, по-видимому, имеет место только в том случае, если поверхность с самого начала частично покрыта водородом. Много важных магнитных исследований по адсорбции этилена уже проведено и проводится в настоящее время. Интерпретация данных не является непосредственной. Причина этого заключается в том, что при обычной температуре очень существенна вандерваальсова адсорбция этилена на никеле разрыв связи, который может привести к полимеризации, возрастает с ростом температуры. На основании магнитных данных можно сделать некоторые заключения, в частности относительно того, что адсорбция этилена на катализаторе N /5102 при обычной температуре дает изотерму намагничивание — объем, которая в большей своей части после поправки на физическую адсорбцию водорода имеет тот же наклон, что и изотерма для водорода. Если наша гипотеза о магнитных эффектах, связанных с хемосорбцией, правильна, то данные, полученные при комнатной температуре, указывают на ассоциативную адсорбцию этилена. Имеется определенная зависимость между собственной активностью катализатора и скоростью введения этилена. Это станет понятно, если мы примем во внимание, что тепло, выделяющееся при адсорбции, должно вызвать значительное повышение температуры каждой частицы цикеля. [c.28]

    Назаревич Е, С. [53 °] применял дитизоп для предварителг -ного концентрирования серебра, свинца, меди, никеля и кобальта при качественном спектрально-химическом определении микроколичеств этих. металлов в природных водах. — Прим. ред. [c.368]

    Метод фотометрии пламени был применен для определения калия в катализаторахэлектролитах234 солях натрия , калия 25 рапе 235. Примесь калия определялась этим методом в солях натрия 236 (после обогащения в виде тетрафенилбората), в рубидии, цезии и их солях 237,238 в солях щелочноземельных металлов 26, ртути в алюминии молибдене, вольфраме и трехокиси вольфрама 131.132.239 в окиси никеля 2, титанате бария 2 , уранилнитрате и в иодиде натрия для сцинтилляцион-ных целей 2 . [c.216]

    Сосновский Б. А. Определение окиси алюминия в железных рудах оксихинолином. Зав. лаб., 1951, 17, № 7, с. 801—802. 6605 Сочеванов В. Г. Исследование возможности одновременного определения никеля и кобальта методом электрометрического титрования, [С прим, ред,]. Зав. лаб,, 1948, [c.215]

    В вопросе об определении геометрического строения комплексов двухвалентного никеля на основании их магнитных свойств автором допущена неточность. Плоские комплексы действительно всегда являются диамагнитными. Но парамагнитные комплексы могут быть не только тетраэдрическими, но, и это осуществляется значительно чаще, октаэдрическими. Такое положение достигается при наличии только четырех лигандов на один атом никеля за счет полимеризации или присоединения двух дополнительн-ых лигандов, например молекул растворителя. — Прим. ред. [c.230]

    Представляет интерес метод вакуумной экстракции для определения кислорода в ниобии [27], основанный на результатах исследований, утверждающих, что кислород можно экстрагировать из ниобия при нагревании до 2000° в вакууме 10торр. Водородный метод применяется для определения кислорода в висмуте [28] и сурьме [29]. Образцы висмута весом 1—10 г в зависимости от содержания кислорода в металле нагреваются при 850—900° в течение 30 мин. Примесь углерода приводит к завышенному содержанию кислорода. Восстановление окислов сурьмы водородом происходит в токе сухого водорода при 700°. Полное время восстановления равно около 4,5 час. Метод вакуум-плавления с железной ванной применяется для определения газов в хроме [30], молибдене, вольфраме [26] из элементов седьмой группы в марганце [1] в элементах восьмой группы в кобальте, никеле [31]. Газы в железе и платине также определяются методом вакуум-плавления. Из рассмотрения свойств других платиновых металлов можно ожидать, что методом вакуум-плавления могут определяться газы в родии и палладии. [c.87]

    Реакция взаимного вытеснения олефинов используется для получения технических смесей алюминийтриалкилов более или менее узкого состава, не содержащих примеси олефинов [380]. Смесь алюминийтриалкилов, полученную в результате присоединения этилена к триэтилалюминию и содержащую примесь значительного количества высших олефинов, которые невозможно отделить перегонкой, обрабатывают олефинами С4—С,, в присутствии катализатора (металлического никеля) при температуре 85° и давлении 10,5 ати. Вытесненные высшие олефины отгоняют совместно с ранее находившимися в смеси и фракционируют. Полученные при такой обработке алюминийтриалкилы с радикалами С4—Сц снова обрабатывают определенной более или менее узкой фракцией олефинов (например, Сд—С ) при температуре 130° и атмосферном давлении. При этом олефины С4—Сд вы-тесняются, и получается смесь высших алюминийтриалкилов [c.256]

    В любом случае прядильный раствор или расплав должен иметь определенную вязкость, из раствора (расплава) перед подачей его в фильеры должны быть полностью удалены механические загрязнения и пузырьки воздуха. Точно дозированное количество раствора (расплава) подается зубчатыми насоси-ками (прядильные насосики) в фильеры. Фильеры представляют собой сменные пластинки (вернее колпачки.—Прим- ред.) из различных материалов (например, из никеля, из тантала) с большим числом отверстий диаметром 0,1—1 мм. По выходе из фильеры струйки жидкости поступают в осадительную ванну (где происходит коагуляция, рис. 108,А,Б) или вшахту пря-дил ьной машины (рис. 108,5). Если нить выходит из фильеры в виде струйки расплава, ее направляют в охлаждающую шахту. [c.413]

    Короче говоря, идеальный способ измельчения горных пород и минералов для анализа еще не найден. Введение стали помимэ того, что искажает величину содержания железа, может изменить и результат определения никеля и марганца. Примесь древесины поведет к заниженной сумме и, вероятно, вызовет восстановление закисного железа до металла и, как следствие, сплавление с платиной при главном сплавлении с содой. Если это останется необнаруженным и неучтенным (см. стр. 205), то тоже поведет к снижению суммы. Искажено будет и определение закисного железа, так как часть перманганата пойдет на [c.29]

    В первой работе Сиборга и Ливингуда [П27] приведен ряд примеров активационного анализа. Примесь 0,0006% галлия к железу была обнаружена облучением образца дейтеронами 6,4 Мэв из циклотрона. При этом галлий дает по реакциям Оа й, р) и (й, р) два, 8-активных изотопа Оа и Оа с полупериодами 20,3 мин. и 14,3 час. После прибавления небольшого количества галлия, в качестве носителя, он был отделен химическим путем от железа, которое также содержало -активный изотоп Ре с полупериодом 47,1 дня, образовавшийся в результате реакции Ре ( , р). Дейтеронное облучение железа дает также несколько радиоактивных изотопов кобальта и марганца, но они не попадали в железную фракцию после ее отделения. Из сравнения активностей Оа °, Оа и Ре , соотношение которых, после поправки на распад за время после облучения, было 0,16 0,091 217, и из природного изотопного состава галлия и железа было вычислено указанное содержание галлия в образце, предполагая, что активность каждого компонента в начальный момент пропорциональна его концентрации, как дает уравнение (9—3) при одинаковых а. В той же работе приведено определение примеси железа к окиси кобальта, в которой после облучения дейтеронами- обнаружена В-активность с полупериодом 18,2 час., принадлежащая Со , образовавшемуся по реакции Ре й, р). Примеси 0,01—0,1% меди к никелю, а также ничтожные следы серы и фосфора в бумаге были открыты после облучения нейтронами, полученными от бериллиевой мишени, на которую направлялся пучок дейтеронов из того же циклотрона. В этих случаях радиоактивные изотопы образуются по реакциям п, ) из стабильных Си и Си , и 5 . В работе Кинга и Гендерсона [1128] примеси до 0,01% меди в серебре были открыты путем облучения а-частицами из циклотрона. Реакция Си (а, п) дает -активный Оа с полупериодом 9,45 часа, который легко может быть отличен от одновременно образующихся из серебра изотопов и с гораздо [c.439]


Смотреть страницы где упоминается термин Никель, определение примесей: [c.218]    [c.99]    [c.39]    [c.268]    [c.374]    [c.153]    [c.180]    [c.39]    [c.91]    [c.70]    [c.268]   
Физические методы анализа следов элементов (1967) -- [ c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Никель определение

Примесей определение



© 2025 chem21.info Реклама на сайте