Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды как катализаторы

    Кальций, пирофосфат Кальций, фторид Катализаторы на основе оксифторидов хрома содержащий оксид ванадия и титана Кирпич строительный Кобальт [c.404]

    Присоединение галоидоводородных кислот к олефинам является весьма общей реакцией, хотя имеется очень большая разница в скорости реакции олефинов разной структуры с HJ, НВг, НС1 и HF. В ряду галоидоводородных кислот иодистый водород реагирует наиболее легко, бромистый водород болео реакционноснособен, чем хлористый водород, а фтористый водород наименее реакционноснособен. Фтористый водород, является эффективным катализатором при алкилировании и применяется в промышленности для алкилирования, при этом образование алкил-фторидов идет в очень малой степени. [c.366]


    На алюмоплатиновом катализаторе, промотированном фтором, реакция изомеризации парафиновых углеводородов не происходит в отсутствие водорода если катализатор модифицирован хлором, реакция в начальный период протекает и в отсутствие водорода (то же явление имеет место и на фторидах металлов V и VI групп, активированных фтороводородом), но с течением времени ее скорость постепенно уменьшается. [c.35]

    В последнее время в качестве перспективных катализаторов изомеризации парафиновых углеводородов рассматриваются каталитические системы - фториды металлов V и VI групп периодической системы, промотированные фтороводородом. На этих катализаторах реакция изомеризации протекает при 20-50 °С [69, 70]. [c.43]

    Влияние фтористого бора на алкилирование алканов [174] и цикланов [175] олефинами изучалось впервые в 1935 г. Исследование каталитического алкилирования выявило целый ряд эффективных катализаторов алкилирования серная кислота, плавиковая кислота, фторид бора, хлористый цирконий и т. д. [c.58]

    Парафиновые углеводороды легко изомеризуются при комнат-но"й температуре при помощи хлористого алюминия и бромида и фторида бора. В некоторых размерах реакция протекает в присутствии концентрированной (100%) серной кислоты, и очень экстенсивно при 300—450° С под давлением водорода над твердыми катализаторами гидрирования-дегидрирования, включая платину или никель и окиси вольфрама и молибдена на базе алюминия или кремний-алюминия. [c.116]

    Ход определения. Фракции катализатора 0,25—0,1 mai прокаливают 2 ч при 500—550 °С. Из пробы отбирают четыре иавески по 3 г и помещают их в конические колбы с притертой пробкой. В каждую колбу приливают по 50 мл 0,1 н. водного раствора, например, хлорида натрия. В две колбы, кроме того, добавляют по 10 мл 0,2 н. раствора фторида натрия. Содержимое колб перемешивают и выдерживают 3—5 ч для достижения равновесия или же перемешивают 1 ч па встряхивающей машине. Затем жидкости сливают и фильтруют. Часть каждого раствора отбирают пипеткой и титруют щелочью в присутствии фенолфталеина. При титровании растворов, в которые был добавлен только хлорид натрия, определяют общую кислотность катализатора, а при титровании растворов, в которые был добавлен и фторид натрия — протонную кислотность. [c.130]

    Первой стадией всех известных промышленных методов получения стирола является синтез этилбензола из бензола и этилена. В подавляющем большинстве случаев, в том числе на современных предприятиях мощностью 150—600 тыс. т./год, алкилирование проводится в присутствии безводного хлорида алюминия. Однако в связи с рядом известных недостатков последнего, а также отрицательным влиянием хлоридов на процесс дегидрирования [2], некоторые зарубежные фирмы (например, Литвин ) разработали процесс алкилирования бензола с применением катализаторов на основе фторида бора. [c.733]


    При использовании хиральных катализаторов для получения сульфидов с помощью алкилирования [1469] и присоединения к активированной двойной связи в некоторых случаях наблюдался высокий выход оптически активных продуктов (разд. 3,1.5). Высушенный с помощью вымораживания фторид калия является очень активным основанием, которое позволяет проводить алкилирование тиолов даже в отсутствие МФ-катализаторов [1605]. [c.147]

    Учитывая сказанное, при экспериментальном определении равновесного состава следует отдать предпочтение применению таких катализаторов, которые не активируют крекинг или гидрогенолиз, например, хлоридам или бромидам алюминия, фториду бора. Для повышения активности к этим катализаторам добавляют промоторы НС1, НР, НВг, Нг и др. [c.179]

    Но если количество катализатора значительно, оказывается возможным образование нового комплекса реагентов и катализатора. Например, раствор фторида бора в безводном фториде водорода, используемый в качестве катализатора изомеризации ксилолов, образует стабильные комплексы с ксилолами, растворимые в кислоте. Было установлено, что комплекс Л4 силола более устойчив, чем комплексы других ксилолов [36]. Учитывая это, можно, применив большой избыток катализатора (3 моль фторида бора и 6 моль фторида водорода на 1 моль ксилолов), нацело изомеризовать при 30°С п-ксилол в л-кси-лол, хотя равновесное содержание последнего меньше 70%. Этот пример показывает возможность значительных ошибок при экспериментальном определении равновесных составов и по ним констант равновесия. [c.179]

    Снижение удельной каталитической активности с повышением концентрации катализатора может быть объяснено связыванием фторид- [c.200]

    Целесообразно совмещать оба процесса — замещение атомов хлора в хлорпроизводных н регенерацию галогенидов сурьмы. В этом случае суммарный эффект сводится к замещению атомов хлора при помощи фтористого водорода, когда хлориды и фториды сурьмы играют роль катализаторов или, вернее, переносчиков фтора  [c.163]

    Технологическая схема производства фреона-12 изображена на рис. U6. Четыреххлористый углерод и жидкий фтористый водород подают насосами 1 через расходомеры 2 под давлением в реактор 3, где находится жидкий катализатор (смесь хлоридов и фторидов [c.165]

    Фторид водорода использовался в качестве катализатора ал-килирования вначале для получения авиационного бензину, затем при алкилировании бензола олефинами. [c.23]

    Фторид водорода обладает рядом достоинств не разлагает и не осмоляет углеводороды, а также не производит окислительного действия катализатор отделяется легко, поэтому получаются продукты с высоким выходом низкая вязкость обеспечивает хорошее перемешивание и быстрое расслаивание хорошо регенерируется использование ее не сопровождается образованием промывных вод, загрязняющих водоем. [c.23]

    Дегидрирование предлагается проводить при малом времени контакта и давлении 0,1—0,7 МПа. Олефины вместе с непрореагировавшими парафиновыми углеводородами отделяют от водорода и передают на стадию алкилирования, где в качестве катализатора используют водные растворы фторида водорода с концентрацией выше 80%, [c.260]

    В литературе встречается немало дезориентирующих сведений о состоянии работающего катализатора. Так, используемый оксидный катализатор часто восстанавливается до металла или превращается в смесь оксида и металла. Поэтому приходится проводить предварительную обработку или активацию данного катализатора. В ходе реакции гидрообессеривания оксидный катализатор превращается в сульфид, а в реакции фторирования—во фторид. Нередко один и тот же оксидный катализатор используется в нескольких различных реакциях. В действительности же в одном случае он оказывается сульфидом, а в другом—смесью металла и оксида. Для разработки рационального способа получения нового катализатора важно знать состав эксплуатируемого катализатора, который в некоторых случаях мало похож на исходный. [c.8]

    Минеральные соли классифицируют по их происхождению (природные и синтетические), по составу (соли натрия, фосфора и т. п.), по методам производства, а также по принципу их потребления. Основным потребителем минеральных солей является сельское хозяйство. В наибольших масштабах производят соли, используемые в качестве минеральных удобрений и пестицидов (препаратов, применяемых для защиты растений). В нромышленности используют разнообразные минеральные соли, некоторые из них в больших количествах. Химическая промышленность является не только производителем, по и одним из наиболее крупных потребителей минеральных солей особенно широко используют соли натрия. Поваренная соль расходуется в громадных количествах как основное сырье для производства хлора, соды, соляной кислоты, едкого натра. Сульфат натрия служит сырьем для производства сульфида натрия и стекла. Сульфид натрия, сульфитные соли (тиосульфат, сульфит и гидросульфит натрия), фториды натрия, дихроматы натрия и калия, фосфаты натрия и многие другие соли, в том числе соли железа, алюминия, бария, применяют в производстве красителей, химических реактивов, катализаторов, искусственного волокна, пластических масс, резины, моющих средств и в других химических производствах. [c.139]


    В качестве сырья при получении глицерина и гликолей гидрогенолизом углеводов используются главным образом водные растворы (древесные гидролизаты, меласса) в этом случае вопрос о растворителе предопределен и остальные факторы должны подбираться с учетом этого. Когда же сырьем служит сахароза, то в качестве растворителя можно использовать не только воду, но и смесь метанол — вода [16], и другие спиртовые среды. Известно, что медные катализаторы на носителях плохо работают при гидрогенолизе водных растворов углеводов [36], если же использовать в качестве растворителей спирты, то можно применять для гидро-генолиза медно-хромовый катализатор и хромат бария, гидроокись и фторид меди, алюминат меди и другие катализаторы, которые дешевле никелевых [37]. Однако в этом случае возникает необходимость в рекуперации и очистке растворителя, что не требуется для воды. [c.115]

    Процессы изомеризации парафиновых углеводородов можно разделить в зависимости от используемых катализаторов осуществляемые на хлориде алюминия, на алюмоплатиновых катализаторах, промотиро-ванных фтором и хлором, на металлцеолитсодержаших катализаторах, на фторидах металлов V и VI групп периодической системы. [c.3]

    В последние годы во ВНИИнефтехиме проводились исследования по изучению реакции изомеризации парафиновых углеводородов С4-С12 в присутствии сверхкислотных катализаторов - системы фторидов металлов пятой группы периодической системы и фтороводорода, показавшие высокие технико-экономические преимущества этого процесса реакция осуществляется в жидкой фазе при 20-50 °С с высокими выходами изомерных углеводородов [105, 141]. [c.129]

    Этерификация—процесс замещения иона водорода в органической кислоте алкильной или арильной группой. Водородный ион действует каталитически на реакцию. Применяются сильные кислоты или соли сильных кислот и слабых оснований. Хлористый цинк усиливает каталитическое действие кислот. Используются и другие катализаторы фториды бора и кремния хлориды алкминия, трехвалентного железа и магния металлы в тонко- [c.328]

    Описан синтез дифенилолпропана с использованием в качестве катализатора комплексного соединения ацетона или фенола с ВРз и в присутствии фторидов щелочноземельных металлов, например СаРд. В сочетании с хлористым водородом катализаторами могут быть ВРз, А1С1з, ЗпС] , 5ЬС15, ЗпР , 5ЬРз. Выход дифенилолпропана 88—90%. [c.64]

    Как и можно было ожидать, в вышеприведенном ряду существуют частичные совпадения и исключения. Например, трифто-рпд бора представляет собой превосходный катализатор алкилирования с алкил-фторидами, спиртами и олефинами, но не очень хорош с алкил-хлоридами и бромидами. [c.134]

    Высокомолекулярный полимер окиси тетрафторэтилена является кристаллическим веществом с Тил == 36 °С. Попытки получения высокомолекулярных сополимеров окисей тетрафторэтилена и гексафторпропилена пока не увенчались успехом. На ионных катализаторах типа фторида цезия образуются только жидкие олигомеры, а при попытке осуществления сополимеризации радиационным методом при низких температурах образуется гомополимер окиси тетрафторэтилена. Перфторированный эластомер с прекрасными свойствами и высокой термической стабильностью синтезирован из а,со-дииодперфтордиэтилового эфира при облучении его УФ-светом в присутствии ртути [40]  [c.512]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Препаративно наиболее важными являются синтезы иодидов и фторидов. Однако техника МФК может быть использована также и для получения хлоридов, бромидов и иодидов, содержащих изотопную метку. Старкс [4] нашел, что полное равновесие С1/з С1 между 1-хлороктаном и На С1 в присутствии четвертичной соли в качестве катализатора достигается при кипении смеси за 5 ч. Аналогичный обмен иод — радиоактивный иод при 100 °С проходит полностью за 5 мин [4]. При обмене химически неэквивалентных групп X и превращение могут лимитировать как равновесие экстракции двух ионных пар Q+X и так и химическое равновесие [c.109]

    СТОИТ В перемешивании р-дикарбонильного соединения с твердым дигидратом фторида калия и Ви4ЫС1 в ацетонитриле при комнатной температуре в течение 9 ч [1235]. Очень тонко раздробленный и тш,ательно высушенный с помощью глубокого охлаждения КР можно использовать в этой реакции без всякого катализатора [1605]. [c.207]

    Таким образом, на основе того, что нам известно о стандартной реакции Виттига, на первый взгляд перспектива улучшения ее проведения в МФК-условиях маловероятна. Однако в 1973 г. Меркль и Мерц [483] показали, что для проведения реакции Виттига даже с неактивированными фосфониевыми солями можно использовать систему концентрированный раствор гидроксида натрия/органический растворитель. С тех пор эту препаративно очень простую методику широко используют [483]. Вопросы, связанные с механизмом реакции, все еще остаются не совсем ясными. Некоторые авторы использовали в качестве катализаторов аммониевые соли или краун-эфиры, другие обходились без катализаторов, аргументируя это тем, что, как известно, фосфониевые соли сами являются межфазными катализаторами. Однако во многих случаях при использовании водного гидроксида натрия первая стадия депротонирования проходит, по-видимому, межфазно. Образующийся илен является нейтральной частицей, и поэтому для облегчения его диффузии в глубь органического слоя катализатор не нужен. Это приводит к тому, что конкурирующая реакция с водой не происходит. В других случаях в качестве щелочей использовали твердый трет-бутоксид калия или карбонат калия [484], твердый фторид калия [1297] или твердый гидроксид натрия [1782]. [c.252]

    Недавно был обнаружен интересный и необъясненный до настоящего времени факт [1299] смесь твердого карбоната калия и 1 мол. % твердого фторида калия является очень эффективной синергической щелочной системой при условии, что обе используемые соли тщательно высушены, а в качестве катализатора применяют BU4NHSO4 реакционную смесь кипятят [c.295]

    Широко используются многие продукты кислотно-основных реакций. Так, например, фторид бора, являющийся мощным катализатором ряда органических реакций, неудобно хранить и транспортировать, так как это газообразное соединение. Поэтому ВРз часто применяют в виде эфирата РзВ 0(С2Н5)а как мы знаем, образование данного вещества представляет типичный случай кислотно-основного взаимодействия по Льюису (см. стр. 252). [c.255]

    Алкилнафталины обычно получают алкилированиеь нафталина спиртами, непредельными углеводородами и алкилгалогенидами в присутствии различных катализаторов серной, фосфорной и галогеноводородных кислот, хлоридов алюминия, цинка и железа, фторида бора и его молекулярных соединений. [c.153]

    К сожалению, недостаточно лзучен механизм воздействия противоиона и его влияние а изомеризационные превращения карбокатионов. В работе (56, с. 3323] показано, что алкилирование бензола 1-додеценом и т/ анс-5-додеценом, как и соответствующими Са-Сю олефинами при контакте с безводным фторидом водорода при О и 55°С приводит к образованию разных по составу изомеров фенилалканов. В этих е условиях гексен-1 и гексен-3 дают одинаковое соотношение 2- и 3-ф ил-гексанов. Добавление к катализатору ВРз эначительно изменяет изомерный состав образующихся продуктов с явно прослеживающейся тенденцией при повышении температуры к равновесному распределению. При 0°С изомеризация подавляется, и состав получаемых продуктов определяется положением двойной связи в исходном олефине. Авторы связывают эти результаты ие с изменением активности системы, а с изменением состава противоиона благодаря введению в ионные пары Вр4 . Добавление щелочных металлов, действующих как основание, способствует понижению функции активности Гаммет-та и приводит к росту содержания 2-фенил-изомера, т. е. кислотность не приводит к понижению выхода данного продукта. [c.223]


Смотреть страницы где упоминается термин Фториды как катализаторы: [c.638]    [c.638]    [c.506]    [c.506]    [c.118]    [c.89]    [c.114]    [c.220]    [c.238]    [c.154]    [c.239]    [c.269]    [c.255]   
Общая химическая технология Том 2 (1959) -- [ c.429 , c.635 , c.743 , c.744 ]




ПОИСК





Смотрите так же термины и статьи:

Промоторы для железных катализаторов фторид

Промоторы для железных катализаторов фторид алюминия

Фторид-ион как катализатор полимеризаци



© 2025 chem21.info Реклама на сайте