Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление термодинамика

    Между теплоемкостью веществ при давлении насыщенного пара и теплоемкостью изобарной существует вполне определенная связь, выражаемая уравнением термодинамики  [c.36]

    Из термодинамики известно, что давление не влияет на энтальпию идеальных газов. Энтальпия паров нефтепродуктов с повышением давления понижается. Для определения энтальпии нефтепродуктов при повышенных давлениях сначала находят их энтальпию [c.71]


    Делаются попытки усовершенствовать производство карбида кальция, однако это связано с большим расходом электроэнергии и сырья, высокими капиталовложениями и себестоимостью кроме того, подобные установки технологически трудноуправляемы. Было предложено, например, для получения необходимого тепла сжигать (в присутствии кислорода) часть кокса для уменьшения расхода электроэнергии. При этом образуется много окиси углерода, использование которой в процессе также может снизить себестоимость ацетилена. В настоящее время, однако, большую часть ацетилена получают старым методом (из карбида кальция). Карбид кальция обладает тем преимуществом, что из него получается ацетилен 97— 98%-ной концентрации, поэтому дальнейшая его очистка очень проста его легко транспортировать. Ацетилен же, полученный из ме-. тана (и других углеводородов), требует трудоемкой операции выделения его из газовых смесей и транспортирования в резервуарах под давлением. Критерием выбора конкретного процесса получения ацетилена из метана (или его гомологов) служат его основные характеристики (термодинамика, кинетика, механизм реакции). [c.99]

    В 1899 г. труды Гиббса были переведены на французский язык Анри Луи Ле Шателье (1850—1936). Физико-химик Ле Шателье в настоящее время наиболее известен как автор правила (1888 г.), получившего название принципа Ле Шателье. Согласно этому правилу, любое изменение одного из условий равновесия вызывает смещение системы в таком направлении, которое уменьшает первоначальное изменение. Другими словами, если система, находящаяся в состоянии равновесия, подвергается воздействию повышенного давления, то она перестраивается таким образом, чтобы занимаемое ею пространство было как можно меньше, так как давление при этом понизится. Подъем температуры вызывает такие изменения, которые сопровождаются поглощением тепла и, таким образом, понижением температуры и т, д. Как оказалось, химическая термодинамика Гиббса четко объясняла принцип Ле Шателье, [c.116]

    Рассмотрим газ в цилиндре с поршнем (рис. 15-3) и допустим, что давление внутри цилиндра Рд утр больше постоянного внешнего атмосферного давления Р. Когда газ расширяется и перемешает поршень на бесконечно малое расстояние ( в, сила, действующая на поршень снаружи, остается постоянной и равной произведению давления Р на площадь А поршня. Выполненная газом работа, как указано в подписи к рис. 15-3, равна произведению приращения объема газа на внешнее давление, против которого осуществляется расширение = Р(1У. Поскольку в рассматриваемом случае преодолеваемое давление остается постоянным, выполненная работа связана с приращением объема газа (ДК) соотношением = РДК Хотя приведенные здесь соотношения получены для газа, расширяющегося в цилиндре, они справедливы в отношении любого процесса расширения газа. Работа, подобная описанной выше, часто называется работой расширения или работой типа РУ. Существуют и другие виды работы. Мы совершаем работу против силы тяжести, поднимая груз в положение, где он имеет большую потенциальную энергию и откуда он может упасть в исходное положение. Электрическая работа осуществляется при перемещении заряженных ионов или других заряженных тел в электрическом потенциальном поле. Мы можем выполнить магнитную работу, отклоняя иглу компаса от направления, куда она указывает в спокойном состоянии. Все эти виды работы включаются в обобщение, известное под названием первого закона термодинамики. [c.14]


    Результаты, полученные Рунге при гидратации пропилена в газовой фазе, представлены в табл. 7. Из таблицы видно, что конверсия пропилена увеличивается при повышении давления и соотношения вода пропилен. Однако уровень нужного давления зависит от уровня температуры, так как для достижения максимальной конверсии давление должно лежать лишь немного ниже точки насыщения на основании законов термодинамики. Высший предел температуры опять же зависит от активности катализатора. [c.63]

    Упругость пара. При любой температуре жидкость частично испаряется. Если испарение происходит в замкнутом сосуде, то оно прекращается тогда, когда упругость пара достигает некоторой, определенной для каждой жидкости и температуры, величины. В этом случае пар насыщает пространство над жидкостью и предельное его давление называется упругостью насыщенного пара. Если удалить часть пара, то сейчас же новое количество жидкости испарится до восстановления предельного давления. Наоборот, если в сосуд ввести извне пар, то часть его будет конденсироваться до тех пор, пока не восстановится то же давление. Термодинамика доказывает, что упругость насыщенного пара имеет для каждой температуры [c.181]

    Уравнение (15-7) представляет собой самое важное для химии следствие из первого закона термодинамики. Оно говорит о том, что теплота реакции, проводимой при постоянном давлении, является функцией состояния. Теплота реакции равна разности между энтальпией продуктов и энтальпией реагентов. Она не зависит от того, протекает ли на самом деле реакция в одну стадию Или в несколько последовательных стадий. С этим законом аддитивности теплот реакций мы уже познакомились в гл. 2, где он был сформулирован без доказательства, но теперь оно становится очевидным. В разд. 2-6 приводился пример с гипотетическим синтезом алмаза, где указывалось, что теплота образования алмаза из метана не зависит от того, получают ли алмаз непосредственно из метана или же метан сначала окисляется до СО2, а затем диоксид углерода используется для получения алмаза  [c.22]

    В книге изложены общие вопросы термодинамики растворов парциальные и интегральные функции, идеальные, регулярные и атермальные растворы, влияние различных факторов на растворимость, критические явления в растворах, а также имеются специальные разделы (растворы при высоких давлениях, термодинамика твердых фаз переменного состава, элементы теории упорядочения твердых растворов и статистической термодинамики твердых фа.->, переменного состава). [c.2]

    С точки зрения термодинамики для достижения максимальной конверсии нужно работать нри таком давлении, которое лишь незначительно ниже точки насыщения. Если это условие выполнено, температуру можно варьировать в широком диапазоне, так как она относительно мало влияет па состояние равновесия. [c.61]

    Значение этих двух величин определяется той ролью, которую играют изохорный и изобарный процессы в термодинамике, и, в частности, в термодинамике нефтяного пласта. Зная эти величины, можно при необходимости вычислить теплоемкость в других процессах. Можно сказать, что теплоемкость флюидальной жидкости (нефти с растворенным в ней газом) является функцией давления, температуры и концентрации растворенного газа. [c.33]

    Математическое выражение первого закона термодинамики показывает, что закон этот дает только количественную характеристику одного из свойств тепловой и внутренней энергии системы эквивалентность перехода их в работу и, наоборот, работы в тепловую и внутреннюю энергию. Однако этот закон не выявляет направленности процесса, т. е. не дает качественной характеристики проявления тепловой энергии. Эту вторую сторону важнейшего свойства тепловой энергии — направленность ири переходе ее в работу или в другой вид энергии — устанавливает второй закон термодинамики, на котором мы остановимся ниже (стр. 158). При расчете технологических процессов исключительно большое значение имеют процессы, связанные с расширением или сжатием газа. Если в подобного рода процессах под влиянием внешнего давления Р происходи г изменение объема данной системы от Vi до V2, то работа, совершаемая ею, равна  [c.67]

    Кроме Ср и Су, в термодинамике иногда приходится использовать и другие виды теплоемкостей. Часто необходимо располагать величинами теплоемкостей твердых и жидких веществ Се при давлении насыщенного пара. При этом теплоемкость также имеет строго определенное значение, поскольку нагревание системы осуществляется при режиме, когда [c.36]

    Предсказания режима изменения температуры и давления в процессах переработки газа возможны на основе представлений термодинамики. [c.35]

    Выше указывалось, что возможность изменения состояния равновесия имеет важное значение для инженера-практика. Изложение условий состояния равновесия было дано без сведений о том, какие интенсивные характерные для равновесия величины состояния следует изменять, чтобы передвинуть равновесие. Кроме того, важно знать, в какую сторону сдвинется равновесие, если какую-либо величину состояния равновесной системы изменить определенным образом. Ответ на этот вопрос дает принцип Ле Шателье — Брауна, известный из термодинамики Если в термодинамической системе, находящейся в состоянии стабильного равновесия, изменить какую-либо интенсивную величину состояния, то равновесие при этом передвинется таким образом, чтобы изменение соответствующих сопряженных экстенсивных величин состояния было по возможности наименьшим . Вывод этого правила можно найти в учебниках по термодинамике, и мы ограничимся только описанием конкретных случаев. С нашей точки-зрения, большую роль играют интенсивные переменные состояния — такие как температура, давление и химический потенциал. Рассмотрим, какое передвижение равновесия числа пробегов реакции будет происходить при изменении этих величин, т. е. какой знак будет перед частными производными [c.140]


    В термодинамике в качестве стандартных условий приняты температура 25° С (298° К) и давление 1 ат- [c.49]

    Энтальпия или теплосодержание газа. Это один из важных параметров технической термодинамики. Энтальпией называется сумма внутренней энергии единицы массы газа (и) и произведения е] о удельного объема на абсолютное давление. Энтальпия обозначается буквой г. [c.26]

    Термодинамика может предсказать высокую степень превращения вещества при заданных температуре и давлении, но это не дает никакой уверенности в том, что реакция будет протекать даже с бесконечно малой скоростью. Известно много примеров, когда по условиям равновесия возможно полное превращение исходных реагентов на самом же деле они не вступают в реакцию. Так, при нормальных условиях сухая смесь кислорода и водорода может сохраняться неопределенно долго уголь в заметной степени не реагирует с кислородом воздуха алюминий не взаимодействует с водой, несмотря на то, что в каждом и этих примеров термодинамическое равновесие наступает при полном превращении исхо дных веществ. Быстрым охлаждением образовавшихся при высоких температурах окислов азота или магния (полученного восстановлением MgO углеродом) можно пред- [c.12]

    Свойства как газов, так и жидкостей и твердых тел при давлениях, отличающихся от атмосферного, определяются по величинам, найденным для стандартного состояния, с использованием основных термодинамических соотношений, в которые входит сжимаемость вещества. В ряде случаев полезными оказываются данные о давлении пара. Читателю, желающему найти подробное описание методов исследования и интересующемуся закономерностями для растворов твердых и жидких веществ, следует обратиться к общим учебникам по термодинамике. [c.365]

    Термодинамика изучает взаимную связь таких измеримых свойств материальной системы в целом и ее макроскопических частей (фаз), как температура, давление, масса, плотность и химический состав фаз, входящих в систему, и некоторые другие свойства, а также связь между изменениями этих свойств. [c.27]

    В термодинамике рассматриваются главным образом такие состояния системы, при которых ряд свойств ее (температура, давление, электростатический потенциал и др.) не изменяется самопроизвольно во времени и имеет одинаковое значение во всех точках объема отдельных фаз . Такие состояния называются равновесными. [c.27]

    Состояния, характеризуемые неравномерным и изменяющимся во времени распределением температуры, давления и состава внутри фаз, являются неравновесными. Они рассматриваются термодинамикой неравновесных (необратимых) процессов, в которой, кроме основных термодинамических законов, используются дополнительные предположения. [c.27]

    Термодинамика осмотического давления [c.243]

    Из термодинамики известно, что внутренняя энергия U является функцией переменных р, v = /р, Т (давление, удельный объем, абсолютная температура), из которых любые две можно считать независи-1 ми. Задание этой функции определяет модель процесса. [c.317]

    Учет особенностей незамерзающих прослоек позволил получить (на основе термодинамики необратимых процессов и теории расклинивающего давления) уравнения течения, связывающие скорость переноса влаги в мерзлых грунтах и пористых телах с теплотой фазового перехода лед — вода [32]. Более подробно эти вопросы рассматриваются в разделе 6 этой же главы. [c.11]

    Термоосмос. Более сложной оказывается ситуация, когда кроме перепада давления АР в прослойке действует также и продольный перепад температуры АТ. При небольших отклонениях от состояния равновесия возникающие эффекты удобно рассматривать на основании термодинамики необратимых процессов. Соответствующая система уравнений, где <7 и ш — удель- [c.20]

    Для решения задачи переноса незамерзшей влаги под действием градиентов температуры и давления требуется рассмотрение взаимосвязанных потоков массы и энергии на основе термодинамики необратимых процессов [32, 318]. Для того чтобы продемонстрировать основной физический механизм явления, рассмотрим щелевую модель порового пространства (рис. 6.5). Здесь пластинка льда заключена между параллельными твердыми стенками, вблизи которых сохраняются незамерзающие прослойки воды толщиною h. Модель отвечает деформируемому пористому телу расстояние между стенками поры может изменяться под действием внешнего давле- [c.105]

    При обсуждении термодинамики чрезвычайно важным понятием являются функции состояния студенты должны ясно понять смысл этого термина, а также определения изолированной, замкнутой и незамкнутой систем, внутренней энергии и энтальпии. Следует указать им, что энтальпия играет важную роль в химии потому, что реакции обычно проводятся в открытых сосудах, а следовательно, при постоянном (атмосферном) давлении. [c.578]

    В первых четырех разделах этой главы рассматривается термодинамика фазовых превращений. В некоторых случаях преподаватель может не рассматривать подробно критическую точку или фазовые диаграммы, но все курсы должны включать материал по теплотам плавления, сублимации и испарению, а также по температурам кипения и давлению пара над жидкостью. Если решено включить в курс фазовые диаграммы, следует тщательно пояснить примеры, приведенные в учебнике. [c.579]

    Теплоемкости Сру и идеального газа, у которого йу < 1, отрицательны, поэтому изобары и изохоры идут в Sy — Ту-диа-грамме с понижением Ту (рис. 3.8), так как подводимая теплота dq >0. При этом изобары идут круче изохор, так как ку = Сру с. у < < 1 и, значит, I Сру I < I с-,у . По мере увеличения давления изобары смещаются вниз в сторону уменьшения условных температур. Для такого идеального газа справедливы уравнения Майера (3.40) и уравнения термодинамики, если заменить в них термодинамическую температуру условной. Энтальпия и внутренняя энергия идеального газа с < I отрицательны, но так как при изобарном или изохорном подводе теплоты величина Ту умень шается, то эти параметры в конце процесса больше, чем в начале т. е. dq = di > u. [c.120]

    Для равновесной системы при пo foянныx температурах и давлении термодинамика дает [c.434]

    В химической термодинамике изучается широкий круг проблем. Шми рассмотрены изолированные и открытые системы, поверхности и статистические модели. Из-за болыпого объема книги опущены многие важные аспекты, такие, как электрохимические реакщш, растворы электролитов и влияние разных силовых факторов, кроме давления. Термодинамика твердых тел, находящихся под напряжением, весьма сложна. При недостаточном объеме она не может быть рассмотрена исчерпывающе. [c.12]

    Гпббс применил принципы термодинамики при изучении равновесия между различными фазами (жидкой, твердой и газообразной), входящими в одну и ту же химическую систему. Например, вода как жидкость и как водяной пар (один компонент, две фазы) могут существовать вместе при различных температурах и давлениях, но если температура задана, то давление также определено Вода как жидкость, водяной пар и лед (один компонент, три фазы) могут существовать все вместе только при одной определенной температуре и давлении. [c.114]

    Для жпдкофазных реакций условия постоянства объема и давления выполняются одновременно для газовых реакций, проводимых нри постоянном объеме, уравнения надо записать несколько иначе, но практически это различие незначительно В этом случае ири выводе уравнения для температуры следовало бы составить баланс внутренней энергии, использовав первый закон термодинамики, и получить, как и в разделе П1.2, уравнение  [c.308]

    Так как в уравнениях (17.17), (17.18) и (17.19), (17.20) некоторые особьГе точки являются общими, термодинамико-топологические структуры концентрационного симплекса и многообразия химического равновесия взаимосвязаны, причем, первая структура накладывает определенное ограничение на вторую. В самом деле, для концентрационного симплекса определенной термодинамико-топо-логической структуры характерным является взаимное расположение изотермоизобарических многообразий, которые размещаются внутри этого симплекса и соответствуют составам, температура кипения которых при постоянном давлении одинакова. Ход изотермо-изобарических многообразий определяется числом, соотношением и взаимным расположением особых точек в концентрационном симплексе. Иными словами, между характером расположения особых точек и характером хода изотермо-изобарических многообразий наблюдается [c.195]

    Единица измерения тепловой энергии — джоуль (Дж). Тепловая энергия — наиболее известная форма энергии. Столь же. корошо известны м е х а н и ч е с к а я энергия и ее основные виды потенциальная и кинетическая. Экспериментально установлено, что механическая энергия может быть целиком превращена в такое же количество тепловой энергии. В термодинамике механическая энергия чаще всего расходуется на работу, которая измеряется произведением силы на путь ее действия (расстояние) или произведением давления на объем. В любом из этих случаев размерность работы одинакова, так как давление есть сила, приходящаяся на единицу площади. [c.36]

    Производным понятием термодинамики является энтальпия (Я)-—полная энергия системы, состоящая из внутренней энергии и работы, которую нужно было затратить, что5ы ввести систему с объемом V во внешнюю среду с давлением р. [c.37]

    Важную роль при каталитическом гидрооблагораживании нефтяных остатков играют реакции гидрирования аренов. О термодинамике гидрирования полициклических аренов и смешанных структур, включающих и насыщенные кольца можно судить только качественно. Это связано с многочисленностью промежуточных продуктов гидрирования этих углеводородов [36]. Скорость гидрирования аренов с различным числом ареновых колец зависит от длины и порядка связей в молекуле. Так, для полициклических аренов характерны укороченные тройные связи,-которые гидрируются легче, чем сопряженные и изолированные двойные связи. В связи с этим конденсированные арены должны гидрироваться быстрее моноциклических аренов, но медленнее алкенов. Подтверждение этому бьшо получено в опытах по гидрированию при высоком давлении водорода (5-30 МПа) и использовании ряда гидрирующих катализаторов. Большую скорость гидрирования полиаренов (например, нафталина и антрацена) по сравнению с бензолом при высоком давлении водорода объясняют тем, что с ростом давления доля поверхности катализатора, занятая водородом, увеличивается, и водород становится доступным для всех укороченных связей [36]. В области низких давлений (0,2—0,3 МПа) наблюдается обратная зависимость, т. е. моноядерные арены гидрируются быстрее. Конденсированные арены с тремя и более кольцами гидрируются последовательно так, что для осуществления каждой следзтощей стадии нужны все более и более жесткие условия. Обычно заметное ускорение реакции наблюдается выше 400 °С, а для протекания процесса нацело необходимы высокие парциальные давления водорода — до 20 МПа. Термодеструктивное расщепление аренов может протекать только через промежуточную стадию гидрирования [c.57]

    Как показывается в термодинамике, можно ввести такие функцни, которые отражают влияние на направление протекания процесса как тенденции к уменьшению внутренней энергии, так и тенденции к достижению наиболее вероятного состояния системы. Знак изменения подобной функции при той или иной реакции может служить критерием возможности самопроизвольного протекания реакции. Для изотермических реакций, протекающих при постоянном давлепни, такой функцией является энергия Гиббса О, называемая так>ке и зобарпо -изотермическим потенциалом, изобарным потенциалом или свобод кой энергией прн постоянном давлении. [c.199]

    Это уравнение совпадает с известным выражением для максимального кристаллизационного давления (т. е. давления на закрытую грань растущего кристалла), полученным из уравнений равновесной термодинамки [319]. Полученный здесь вывод следует из более строгого анализа неравновесных процессов на основе необратимой термодинамики. [c.109]


Смотреть страницы где упоминается термин Давление термодинамика: [c.183]    [c.44]    [c.31]    [c.37]    [c.53]    [c.7]   
Курс физической химии Издание 3 (1975) -- [ c.361 ]




ПОИСК





Смотрите так же термины и статьи:

Вант-Гофф влияние растворителя на равновесие изотонический коэфициент осмотическое давление теория растворов формула закона разведения химическое равновесие химическая термодинамика цикл

Давление жидкости в реакционном аппарате при ее термическом расширении (термодинамика жидкости)

Осмотическое давление термодинамика

Применение второго закона термодинамики к изолированной системе. Энтропия, как критерий самопроизвольности и равновесия процесса Зависимость энтропии идеального газа от температуры и давления

Термический крекинг под давлением термодинамика

Термодинамика полимеризации. Смещение равновесия полимеризации под давлением

Термодинамика систем, находящихся под действием высокого давления

Термодинамика систем, находящихся под действием высокого давления Уравнения состояния

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ Описание равновесия для гетерогенных реакций в конденсированных системах при повышенных давлениях Шленский



© 2025 chem21.info Реклама на сайте