Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дитизон никеля

    Определение металлов группы дитизона. Никель 2П [c.277]

    С именем Л. А. Чугаева связывают становление в 20 в. нового научного направления-целенаправленного синтеза и применения ОР в аналит. химии. Он впервые сформулировал нек-рые положения теории действия ОР, образующих комплексные соединения. Предложенный ученым в 1905 реагент-диметилглиоксим широко применяют для определения никеля. Вскоре были синтезированы и введены в аиалит. практику многие др. реагенты дифенилкарбазид, купферон, ДИТИЗОН. Ф. Файгль (1931) развил учение о специфич. функцион. аналит. группировках в ОР. [c.201]


    Растворы дитизона применяют для фотометрических определений серебра, висмута, кадмия, кобальта, меди, ртути, свинца, платины (IV), никеля, индия, цинка. [c.144]

    Титрование сульфидной серы ацетатом ртути(П) в присутствии дитизона использовано для определения серы в алюмо-никель-молибденовом катализаторе [1496]. [c.68]

    Фотометрическое определение никеля осуществляют также с другими реактивами, например с дитизоном, а также с производными диметилглиоксима, например с а-фурилдиоксимом  [c.79]

    При фотометрическом определении кобальта нитрозо-К-со-лью поступают следующим образом [492]. Высушенную навеску растительного материала озоляют при 450" С и обрабатывают концентрированной серной кислотой. Золу обрабатывают фтористоводородной кислотой для удаления кремнекислоты, остаток растворяют в горячей разбавленной соляной кислоте и раствор фильтруют. К фильтрату прибавляют цитратный буферный раствор с рП 8,3 и экстрагируют кобальт (также медь, никель, цинк) раствором дитизона в хлороформе. Хлороформ отгоняют, разрушают дитизонаты обработкой азотной или хлорной кислотой и далее определяют кобальт нитрозо-К-солью. [c.214]

    Метод позволяет определять 2-10 —ЫО % никеля после отделения меди дитизоном и экстрагирования диметилглиоксимата никеля. Подготовка образца к анализу описана в разделе Определение кобальта . [c.151]

    При высоком содержании меди добавляют цианид калия и определяют кадмий и никель (см. стр. 291). Цинк определяют после экстракции с дитизоном (см. стр. 282), [c.279]

    Высокое содержание кадмия не влияет на определение меди никель определяют после удаления кадмия сульфидом в цианид-ной среде (см. стр. 311). Небольшие количества цинка определяют после извлечения дитизоном. [c.279]

    При высоком содержании никеля можно определять одновременно очень небольшие количества меди и кадмия цинк определяют после извлечения его с дитизоном или после отделения в щелочной среде. [c.279]

    Мешающие влияния. Определению мешают большие концентрации элементов, которые восстанавливаются при более положительных потенциалах, чем цинк. В аммиачном электролите такими элементами являются медь, кадмий, никель, кобальт и частично свинец. Цинк от этих элементов отделяют экстрагированием дитизоном в четыреххлористом углероде при pH 5 в присутствии тиосульфата и цианида. Для экстрагирования берут такое количество пробы, чтобы общее содержание цинка было в пределах 0,005—0,5 мг. Объем доводят до 50 мл, прибавляют две капли метилового красного и смесь нейтрализуют разбавленной соляной кислотой или раствором аммиака (1 5) до изменения окраски индикатора. После этого прибавляют 20 мл маскирующего раствора, содержащего цианид, и тиосульфат (приготовление—см. стр. 284). Цинк экстрагируют порциями по 20 мл раствора дитизона (0,1 г дитизона на 500 мл четыреххлористого углерода) до тех пор, пока окраска раствора дитизона не перестанет изменяться. Экстракты собирают в другой делительной воронке. После экстракции цинк переводят в водный раствор встряхиванием с тремя порциями соляной кислоты (1 5) по 25 мл. Водные экстракты собирают в чашке для упаривания и на водяной бане выпаривают досуха. Остаток смачивают концентрированной соляной кислотой, снова выпаривают досуха и добавляют 2—3 капли концентрированной соляной кислоты. Анализ продолжают по варианту Б или же остаток после выпаривания растворяют в воде, раствор количественно переводят в мерную колбу емкостью 50 мл и продолжают анализ по варианту А. [c.286]


    В сильнощелочной среде с дитизоном, помимо кадмия, реагируют серебро, медь, никель и кобальт. [c.289]

    Медь, ртуть и малые количества серебра удаляют из пробы экстрагированием дитизоном при pH 2. К 50 мл пробы (или раствора, полученного после минерализации пробы или удаления из нее большей части серебра) прибавляют 5 мл 20%-ного раствора тартрата натрия и калия и доводят pH до 2 добавлением концентрированной соляной кислоты или раствора аммиака. Пробу экстрагируют в делительной воронке порциями по 5 жл 0,1 % -ного раствора дитизона в хлороформе до тех пор, пока зеленая окраска дитизона в растворе не перестанет изменяться. После этого пробу промывают порциями по 10 мл хлороформа до тех пор, пока хлороформный слой не- останется бесцветным. Окончательно пробу промывают 2 раза встряхиванием с Ъ мл четыреххлористого углерода. Если за э кс-тракцией указанных элементов должно последовать экстрактивное удаление никеля, осадок четыреххлористым углеродом не промывают. [c.289]

    Сульфид никеля разлагается кислотой и выделившийся при этом сероводород поглощается щелочным раствором ацетона, титруется раствором уксуснокислой ртути в присутствии дитизона (индикатора). Содержание серы в анализируемом продукте рассчитывается по количеству оттитрованного сероводорода. [c.253]

    Колориметрическое определение меди про водилось по реакции с дитизоном, никеля— с а-фурилдиоксимом, кобальта — с нитрозо-Р-солью, серебра и платины — колориметрическим титрованием с дитизоном, висмута — с тиомочевиной, марганца — по реакции с персульфатом аммония в присутствии серебра. Чувствительность определения этих микропримесей из навески 10 г после отделения галлия трехкратной экстракцией бутилацетатом из 1Ъ мл а М НС1 составляет 1-10-в —5-10- %. [c.206]

    Молярный коэффициент погашения коричнево-фиолетового комплекса при Я = 665 нм равен 19 200. При использовании хлороформа в качестве растворителя никель экстрагируется при pH = 8 -4- 11. Молярный коэффициент погашения при Я = 670 нм равен 20 ООО. Так как на экстракцию влияют все металлы, реагирующие с дитизоном, никель необходимо предварительно выделять диметилглиоксимом. А , Н , Р(3, Ли, Си и В можно удалить экстракцией дитизоном при pH < 3 1 = 0,44 (0,76). Молярный коэффициент погашения карминово-красного комплекса при Я = 520 нм равен 68 800. При использовании хлороформа как растворителя свинец экстрагируется при pH = 8,5 -4- 11 (lg К,,, = —0,9). Молярный коэффициент погашения комплекса при Я = 518 нм равен 63 600. При использовании в качестве маскирующих веществ цитратов (или тартратов) и кем (до 10%) на процесс влияют только В1, Т1 (1), 5п (И) и 1п. Висмутотде-ляют предварительной экстракцией дитизоном при pH 2. Влияние Т1 (I) и 5п (II) устраняют их окислением. Большие количества 1п необходимо предварительно отделить экстракцией диэтиловым эфиром из КВг В кислых растворах образуется коричнево-зеленый однозамещенный дитизонат палладия, который не разлагается даже [c.165]

    При определении металлов в воде химическими методами или с использованием атомно-абсорбционной спектрофотод1етрии их переводят в ионное состояние, что достигается мокрым озоле-нием смесью азотной и серной кислот (Аз, Сг, Си, 7п, N1, С(1, Со) или смесью азотной и хлорной кислот (РЬ). При анализе сточных вод применяют наиболее простые и достаточно точные методы. Например, для определения общего хрома — с дифенилкарбазидом меди — с диэтилдитиокарбаминатом натрия цинка, кадмия и свинца — с дитизоном никеля — с диметилглиоксимом мышьяка — с диэтилдитиокарбаминатом серебра в эфедрино-хлороформном растворе. [c.71]

    Неорганические ионы для экстрагирования переводят в комплексные соединения с неорганическими или органическими лигандами. Особенно эффективны для этой цели органические комплексанты, образующие так называемые хелатные соединения. Например, диметилглиоксим является селективным экстрагентом для никеля, а-нитрозо-р-нафтол—для кобальта, дифенилтиокарбазон (дитизон) применяют для экстракции таких металлов, как серебро, ртуть, свинец, медь, цинк. С неорга-ническимн лигандами можно экстрагировать железо(П1) в виде соединения НРеС , железо(1П), кобальт(П) и молибден (V) — в виде комплексных ионов с роданид-ионом. [c.311]

    В лаборатории института Гипроникель разработан способ электролитического получения никеля чистоты 99,9999% с применением нерастворимого анода. Из раствора N 012, приготовленного растворением карбонильно го никеля, удаляют примеси железа, кобальта, меди и других более электроположительных металлов с помощью электролитической очистки. Окончательную очистку от меди производят дитизоном, а доочистку от железа — купфероном. Экстрактором служат чистые ССЦ или С2Н5О. Электролиз ведут в растворе 150 г/л N1 в виде ЫЮЬ при температуре 70°, п ютности тока 1300 а/м . Катодом служит титан, анодом — чистейший графит. Полученный осадок нагревают в течение нескольких часов в вакууме при 1400°, при этом никель теряет водород, кислород, углерод, а также цинк, олово, кадмий, оставшиеся после электролитической очистки. [c.585]


    Внутрикомплексные соединения обладают свойствами, благодаря которым они широко применяются в химическом анализе. Им свойственны характерная окраска, сравнительно высокая устойчивость, они малорастворимы в воде. К внутрикомплексным соединениям относятся диоксимины железа (1Г) и никеля, соединения оксихинолина с ионами алюминия и магния, дитизона — с ионами цинка и др. [c.95]

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    Для аналитической химии большой интерес представляет экстракция незаряженных внутрикомплексиых соединений в условиях образования мономерных частиц в органической фазе. Обычно в качестве лигандов применяют органические реагенты, обладающие кислотными функциями (Кцисс — 10 — 10 °), являющиеся чаще всего бидентатными. Примером определения элементов в виде внутри-комплексных соединений является определение никеля в ряде объектов а-диоксимами (стр. 186), кобальта нитрозо-нафтолами (стр. 160), цинка дитизоном (стр. 220), алюминия 8-оксихинолином и др. Для этого определяемый элемент в виде внутрикомплексного соединения переводят в органическую фазу с последующим фотометрированием экстракта. [c.80]

    Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и в каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 23). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бу-тпловьп1, амиловый), хлоропроизводные (хлороформ, четыреххлористый углерод). Иод можно извлечь бензолом, сероуглеродом, хлорное железо — диэтиловым или диизопропиловым эфиром. Лучше всего катионы металлов извлекаются органическими растворителями, если соответствующий металл предварительно связать в виде внутрикомплексного соединения. Например, свинец связывают дитизоном и извлекают четыреххлористым углеродом, никель связывают диметилглиоксимом и извлекают хлороформом в присутствии цитрата натрия. Смеси ионов различных элементов можно разделять экстракцией, используя избирательное (селективное) извлечение различными растворителями и регулируя pH раствора. Можно осуществлять также и групповые разделения ионов. [c.454]

    Переведение определяемого элемента в разнолигандный комплекс. В качестве примера можно [фи-вести образование разнолигаидного комплекса никеля с дитизоном и 1,10-фенантролином (или 2,2 -динири-дилом). Экстракция дитизоната никеля проходит очень медленно, кроме того, при этом наблюдаются различные побочные процессы, вплоть до образования сульфида никеля. Прибавление третьего компонента— 1,10-фенантролина или 2,2 -дипиридила — приво- [c.526]

    Описаны косвенные методы, включающие осаждение натрия в виде тройных ацетатов с уранилом и магнием, цинком, кобальтом Или никелем и комплексонометрическое титрование магния [21, 834], цинка [338, 644, 813, 1147, 1164], кобальта [752, 1166], никеля [752] или урана [21, 703]. В качестве металлюиндикаторов используют ксиленоловый оранжевый [21, 703, 1164], дитизон [813], муре-ксид [1166] и эриохромовый черный Т (в остальных случаях). [c.74]

    Хеллер, Кула и Мачек [670, 6711 и А. А. Резников [181] определяли полярографически следы висмута и других тяжелых металлов в минеральных водах. Тяжелые металлы предварительно экстрагируют раствором дитизона в четыреххлористом углероде. По другому варианту к воде прибавляют роданид и пиридин и тяжелые металлы извлекают четыреххлористым углеродом. Затем висмут, свинец, цинк и никель переводят в водный раствор и определяют полярографически. [c.305]

    Титриметрические методы. Содержание никеля можно определять прямым титрованием растворами органических реактивов диметилглиоксима с внешним индикатором (бумага, смоченная раствором диметилглиоксима), диэтил-дитиокарбамата, дитизона, 8-оксихинолина и некоторых других. Очень точные результаты дает цпанидный метод. [c.79]

    Дитизон (см. Цинк ) образует с кадмием в щелочной среде комплексное соединение красного цвета, экстрагируемое органическими растворителями. В аналогичных условиях (pH 6—14, хлороформ) реагируют катионы цпнка, меди, никеля, кобальта. В их присутствип при отделении кадмия используют. различие устойчивости дитизо-натов в зависимости от pH среды. [c.105]

    Из перечисленных органических осадителей хорошие результаты дает фенилтиогидантоиновая кислота, которая позволяет отделять кобальт от мышьяка, урана, ванадия, титана, воль-ф)рама, молибдена, цинка, марганца, алюминия, магния, кальция. Из экстракционных методов разделения хорошо зареко.мен-довал себя дитизоновый. метод, особенно для. малых количеств кобальта. Экстракция дитизоном в кислом растворе позволяет отделить медь от кобальта наоборот, в слабощелочных цитратных растворах экстрагируется дитизонат кобальта, а железо, титан, хром, ванадий и другие металлы, не образующие дитизонатов, остаются в водном растворе. Экстракцию двойных и тройных роданидных ко.мплексов кобальта. можно также с успехом использовать для отделения кобальта от большинства других элементов, в том числе от никеля, железа и меди, если последние два элемента за.маскировать. [c.61]

    Разделение дитизоном. Дитизон применяется главным образом для отделения небольших количеств кобальта от посторонних элементов перед его фотометрическим определением в силикатных породах, биологических и растительных материалах и др. Дитизонат кобальта образуется при pH от 5,5 до 8,5. Это дает возможность отделить от кобальта серебро, медь, ртуть (II), палладий (II), золото (III), висмут, т. е. элементы, экстрагирующиеся раствором дитизона в хлороформе или четыреххлористом углероде при pH менее 4. Экстрагирование дитизоном из аммиачного раствора, содержащего цитрат, отделяет кобальт от железа, хрома, ванадия и многих других металлов. Цинк, свинец, никель и кадмий при указанных условиях экстрагируются вместе с кобальтом, однако если экстракт обработать разбавленным раствором соляной кислоты, то дитизонаты цинка, свинца и кадмия разлагаются и переходят в водную фазу, а дитизонат кобальта остается в неводном растворе без изменения [827]. [c.76]

    Электрод из пластиковой мембраны, импрегнированпый дитизоном, является индикаторным при потенциометрическом титровании серебра аскорбиновой кислотой [1107], оксалатом натрия, иодидом и гексацианоферроатом калия [1106]. Для связывания ионов цинка, свинца, меди и никеля при определении иодидом калия в анализируемый раствор вводят цитрат натрия [1106]. Ошибка титрования 10 —10 г-ион/л серебра составляет < 3,7%. Титрованию оксалатом мешают сульфаты натрия, магния, индия и меди, а при определении с гексацианоферроатом калия — этанол, ацетон, диоксан ( 25%). Нитрат натрия уменьшает скачок потенциала в точке эквивалентности. [c.99]

    Еребро и никель в аммиачном растворе образуют с дитизоном устошивые комплексы, поэтому определению не мешают РЬ, Мп, Zn, q и u [1016]. Окрашенный в красный цвет аммиачный раствор дитизоната серебра фотометрируют при 562 нм. Реагент добавл т в виде 0,005%-ного спиртового раствора. Закон Бера соблюдался при концентрации серебра 0,1—1,0 ч. на 1 млн. Присутствие 50-кратного избытка меди и золота на фоне комплексона III определению серебра не мешает [957]. Можно определять серебро дитизоном в водно-ацетоновой среде с чувствительностью 0,5 мкг в 4 мл анализируемого раствора [231], измеряя оптическую плотность раствора относительно раствора дитизона в ацетоне при 465 нм или при 603 нм относительно воды. [c.111]

    Микроколичества серебра отделяют от ряда элементов и концентрируют их нередко другими методами. Известны методы выделения серебра соосаждением с металлическими никелем, свинцом, алюминием, палладием, элементным теллуром. В качестве коллекторов служат осадки карбоната кальция или фосфата кальция, иодид таллия и др. Для концентрирования серебра и его отделения от мешающих элементов рекомендуется применять многие органические соосадители. Описаны методы соосаждения серебра с применением в качестве коллектора дитизона, диэтилдитиокарбамината меди, га-диметиламинобензилиденроданина, ок-сихинолина, тионалида и некоторых других органических соединений. [c.138]

    Метод основан на способности активного катализатора никеля Ренея реагировать с содержащимися в углеводородах сераорганическими соединениями, образуя сульфид никеля. При действии на сульфид никеля соляной кислоты выделяется сероводород, который поглощается щелочным раствором ацетона. Количество поглощенного сероводорода определяется титрованием раствором ацетата ртути в присутствии индикатора дитизона. Происходящие при этом реакции могут быть выражены следующими уравнениями  [c.63]

    В реакционную колбу 2 (рис. 17) помещают 0,18-0,20 мл никеля Ренея, суспендированного в 2 мл изопропилового спирта. После взвешивания закрытой колбы в нее наливают пробу анализируемого продукта. В капельную воронку 4 наливают 10 мл серной кислоты и помещают колбу в колбонагреватель. Микробюретку 7 заполняют раствором ацетата ртути. В абсорбер 8 наливают 10 мл ацетона, 10 мл 1 н. раствора едкого натра, 3—5 капель дитизона и 1—2 капли раствора ацетата ртути. Со скоростью 1—2 пузырька в 1 с в колбу подают азот, подают воду в холо- [c.45]

    Как и при обработке сточных вод, содержащих органические вещества, в процессе обработки стоков гальванических производств можно использовать различные приемы. Выше упоминалась идея увеличения размера частиц, которые должны быть удалены. Металлы могут образовывать комплексы с различными органическими веществами. Например, этилендиаминтетраацетат и дитизон образуют большие (в молекулярном смысле) комплексы, которые можно выделить с помощью гораздо менее плотной мембраны, чем требовалось бы для выделения ионов. Некоторые комплексообразующие реагенты образуют растворимые комплексы. Другие, такие, как ди— метилглиоксим, офазуют с никелем нерастворимые комплексы. Для целей, описанных в этом разделе, обычно полезны оксимы. [c.291]

    Однако, когда Фридберг проводил экстракцию ионов серебра раствором дитизона в четыреххлористом углероде при pH 2, он обнаружил, что ионы меди остаются в растворе. Очевидно, этот метод разделения основан на использовании низкой скорости установления равновесия экстракции меди в присутствии ЭДТА — установлено, что при более высоких концентрациях медь экстрагируется крайне медленно. Фридберг показал, что ЭДТА при любом pH предотвращает экстракцию дитизоном ионов свинца, цинка, висмута, кадмия, никеля, кобальта и таллия. [c.296]


Смотреть страницы где упоминается термин Дитизон никеля: [c.281]    [c.69]    [c.320]    [c.488]    [c.100]    [c.210]    [c.373]    [c.283]    [c.532]    [c.151]   
Фотометрическое определение элементов (1971) -- [ c.269 , c.274 ]




ПОИСК





Смотрите так же термины и статьи:

Дитизон



© 2025 chem21.info Реклама на сайте