Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная кислота металлов и сплавов

    Непосредственно перед погружением изделий в гальваническую ванну производят декапирование — легкое протравливание металлической поверхности для удаления тонкой пленки окислов и обеспечения прочного сцепления металла с покрытием. Химическое декапирование цветных металлов (цинка, алюминия, меди и ее сплавов и др.) осуществляют в разбавленных растворах серной, соляной и азотной кислот, а также в 3—5%-ном растворе Na N или K N. [c.215]


    Принцип метода.Весовой метод определения олова заключается в получении нерастворимой -оловянной кислоты. При растворении металла или сплава в азотной кислоте происходит реакция [c.172]

    При растворении следует стремиться к тому, чтобы вещество растворилось полностью, независимо от того, полный или неполный анализ требуется провести. Многие неорганические соли и некоторые органические соединения хорошо растворяются в воде, подкисленной минеральными кислотами, чтобы предотвратить гидролиз (соли железа, висмута и др.). Органические соединения хорошо растворяются в органических растворителях - спирте, ацетоне, хлороформе и др. Большинство металлов и сплавов, а также оксидов, карбонатов, сульфидов и др. растворяется в разбавленных или концентрированных кислотах. Выбор кислот осуществляется на основании химических свойств растворяемых веществ. Так, сплавы и оксиды железа лучше растворять в хлороводородной (соляной) кислоте вследствие склонности Ре " к образованию хлоридных комплексов хром и алюминий не растворяются в азотной кислоте из-за образования на поверхности пассивирующей оксидной пленки и т.д. [c.49]

    Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]

    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]


    Из последователей Парацельса наиболее интересен много занимавшийся вопросами химии голландский врач Ван Гельмонт (1577—1644). Он был первым ученым, описавшим различные виды воздуха и впервые применившим в этих описаниях самое слово газ . Им отмечено уменьшение объема воздуха при горении некоторых веществ. Замечателен опыт Ван Гельмонта с серебром он растворил отвешенное количество этого металла в азотной кислоте ( крепкой водке ), а затем выпарил раствор, прокалил и сплавил остаток. Вес полученного серебра оказался равным исходному. Серебро не теряет своей сущности от того, что было растворено в крепкой водке, хотя оно сейчас же исчезло с глаз и сделалось совсем прозрачным , — пишет Ван Гельмонт. [c.16]

    Торможением анодного процесса вследствие наступающего явления анодной пассивности объясняется малая скорость коррозии ряда металлов и сплавов и, в частности, нержавеющих сталей, а также алюминия в водных растворах солей ири доступе кислорода воздуха или в азотной кислоте. Образование анодных фазовых пленок на поверхности металла может быть результатом осаждения на поверхности анода труднорастворимых [c.35]

    На вопрос, как велось определение состава сплавов в то время в лабораториях монетных дворов, мы находим ответ в книге Шлаттера [19], где подробно изложены методы определения количества серебра, золота и меди. Указывается, что для приблизительного представления о содержании золота и серебра можно пользоваться пробирными иглами. Иглы сплавляются при помощи паяльной трубки и имеют заведомо известное содержание драгоценного металла. На пробирный камень наносится ряд черт иглами различного состава и с ними сравнивается черта, проведенная испытуемым сплавом. Черту на камне пробуют на растворение в азотной кислоте (для сплавов золота) и в царской водке (для сплавов серебра) [20]. [c.134]

    Стойкость по отношению к кислотам. В азотной кислоте алюминиевые сплавы обладают высокой химической стойкостью при концентрациях выше 80% и при температурах ниже 50° С. В муравьиной кислоте, уксусной кислоте, в масляной кислоте в пределах концентрации от 3 до 99,75% и в пропионо-вых кислотах алюминиевые сплавы обладают высокой стойкостью только при комнатных температурах. В жирных кислотах сплавы обладают высокой стойкостью даже вблизи температур кипения только в присутствии воды. Безводные жирные кислоты вызывают значитель-ну ю коррозию этих сплавов, присутствие в кислотах тяжелых металлов также вызывает значительное снижение химической стойкости. Лимонная, молочная и винная кислоты слегка разрушают алюминиевые сплавы при комнатной температуре, салициловая кислота безводная не оказывает никакого действия на сплавы, во влажном состоянии вызывает слабую коррозию. [c.433]

    Тетранитрометан (N02)4 является перспективным окислителем, более эффективным, чем концентрированная азотная кислота. В молекуле тетранитрометана содержится большое количество активного кислорода. Тетранитрометан — тяжелая подвижная жидкость зеленоватого цвета с резким запахом. Чистый тетранитрометан имеет плотность 1,643 при температуре 20° С, кипит при 125° С и замерзает при 13,8° С. Тетранитрометан при обычной температуре является стабильным веществом и может храниться годами без заметного изменения. Лишь при нагревании выше 100° С он частично разлагается с образованием окислов азота и углекислого газа. В воде он растворяется очень плохо. Важным преимуществом тетранитрометана перед азотной кислотой является его малая коррозионная активность по отношению к металлам и сплавам. Стекло, нержавеющая сталь, алюминий и свинец не коррозируют в тетранитрометане. [c.127]

    Символ Нд серебристо-белый, блестящий, единственный жидкий при комнатной температуре металл обладает низкой электропроводностью, значительно увеличивающейся при температуре застывания сильный яд. На воздухе проявляет устойчивость не реагирует с больщинством разбавленных кислот, однако медленно взаимодействует с разбавленной азотной кислотой с окисляющими кислотами образует соли реагирует также с серой и галогенами со многими металлами дает сплавы (амальгамы). [c.168]

    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов прн высоких температурах (выше 900°С) окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до оксида азота, т. е. селективность процесса, достигает 98%. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до оксида азота, могут служить платина и ее сплавы с металлами платиновой группы, оксиды железа, марганца, кобальта и др. До [c.100]


    Азотная кислота корродирует и растворяет все металлы кроме золота, платины, титана, тантала, родия и иридия, однако в концентрированном виде пассивирует железо и его сплавы. [c.209]

    Осаждение из азотнокислых растворов. При электролизе азотнокислых растворов катодный и анодный процессы в основном те же, что в предыдущем случае. Подготовка раствора к электролизу должна быть проведена так, чтобы обеспечить полное удаление окислов азота и азотистой кислоты. Обычно с азотнокислым раствором приходится иметь дело после растворения металла или сплава в азотной кислоте такой раствор всегда содержит окислы азота, которые следует удалить кипячением. [c.199]

    В припое олово и свинец сохраняют индивидуальные химические свойства, поэтому чтобы перевести металлы в ионное состояние, следует обработать сплав соответствующими кислотами. Для этого поместить в пробирку маленький кусочек припоя и внести 5—8 капель концентрированной азотной кислоты (плотность [c.180]

    Так как по условию задачи после растворения сплава в концентрированном растворе азотной кислоты осталось 54 г (70—16) неизвестного трехвалентного металла, растворимого в растворе щелочи, то, зная объем израсходованного хлора, можно рассчитать массу моля неизвестного трехвалентного металла [c.86]

    На основе капельного анализа Н. А. Тананаевым разработан бесстружковый метод анализа металлов и сплавов. На поверхность металла или сплава наносят каплю азотной кислоты или другого растворителя. Часть металла растворяется, каплю полученного раствора соли подвергают капельному анализу. Другой вариант — нанесение реагента на чистую поверхность металла и наблюдение происходящих при этом изменений. По тому, протекает реакция или нет, делают вывод о присутствии или отсутствии определяемого элемента. [c.124]

    Для травления широко используют ванны, изготовленные из стали и изнутри гуммированные. Для защиты от коррозии наружные стенки ванн покрывают кислотоупорным асфальтовым лаком. Ванны для травления черных металлов изготовляют в ряде случаев из дерева и футеруют изнутри кислотоупорным материалом (например, винипластом). Для травления меди и ее сплавов в азотной кислоте можно применять керамиковые ванны. [c.227]

    Р е ш е н и е. Из двух металлов сплава в азотной кислоте растворяется только медь, восстанавливая ее в разбавленных растворах до оксида NO  [c.33]

    Марганец и его соединения. Марганец внешне похож на железо, но тверже его. Это — серебристо-белый металл с плотностью 7200 кг/м и температурой плавления 1260 °С. На воздухе легко окисляется. Оксидная пленка быстро покрывает всю его поверхность и предохраняет от дальнейшего окисления. Еще более платная оксидная пленка образуется при действии на марганец холодной азотной кислоты. С железом марганец образует сплавы в любых количественных соотношениях. [c.476]

    Применение. Все три металла используют для получения сплавов. Например, галлий и индий входят в состав легкоплавких сплавов и припоев. Индий содержится в сплавах, применяемых в ядерных реакторах для регулирования скорости реакций. Таллий добавляют в сплавы, применяемые для изготовления подшипников. Сплавы, содержащие таллий, обладают высокой коррозионной стойкостью сплав 70 % РЬ, 20 % Sn и 10 % Т1 не растворяется даже в хлороводородной и азотной кислотах. [c.232]

    Сплав не стоек в окислительных условиях, например в азотной кислоте или в растворах хлоридов металлов, обладающих окислительными свойствами, таких как Fe lj. [c.365]

    Рассмотрим теперь, каковы возможности легирования тугоплавких металлов, предназначенных для работы в азотной кислоте. При эксплуатации в кипящей концентрированной азотной кислоте допустимо содержание в сплавах тантала до 25 мас.% Nb, до 60 мас.% V и до 10 мас.% Ti. [c.83]

    Так как все металлы, за исключением золота, платины, олова и сурьмы, растворяются в азотной кислоте, то сплавы почти всегда переводятся в раствор азотной кислотой, и только в немногих случаях необходима применение царской водки. Некоторые богатые кре.м-нием сплавы (например, кремнистая медь) чрезвычайно трудно растворимы или совсем не растворимы даже. в царской водке. Тшие сплавы лучше всего разлагать путе.м сплавления с едким кали в серебряном тигле плав затем обрабатывают азотной кислотой. [c.528]

    В присутствии окислителен, например азотной кислоты, никельмедные сплавы неприменимы. Содержащиеся в кислоте ионы металлов, способные восстановиться, резко снижают коррозионную стойкость этих сплавов. [c.173]

    Равномерная коррозия металлов наблюдается в тех случаях, когда агрссснв11ые среды не образуют защитных пленок иа металле или когда сплав состоит из равномерно распределенных мелкозернистых анодных и катодных участков. Интенсивная равномерная коррозия наблюдается ири коррозии меди в азотной кислоте, железа в соляной кислоте, алюминия в едких щелочах, цинка в серной кислоте. В некоторых случаях равномерная коррозия ие вызывает значительного разрушения металла, тем ие меиее она может быть нежелательной из-за других причин (потускнение иоверхности металла, загрязнение раствора продуктами коррозии и др.). При равномерной коррозии продукты коррозии обычно не отлагаются иа поверхности металла. [c.160]

    В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению иоверхности металла такими реагентами, которые растворяют только продукты коррозии, но ие металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-ным раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализоваииого аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — насыщенный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеющий температуру 10—20 С. [c.337]

    Титан показал ограниченную стойкость в сильных окислителях таких, как дымящая азотная кислота и концентрированная перекись водорода. Металл в этих условиях довольно чувствителен к удару, так как на свежеобразовавшейся поверхности пленки протекает спонтанная реакция, которая в статических условиях не идет. Стойкость к ударному воздействию зависит от состава сплава и состояния поверхности. Наличие иа поверхности твердых частиц и других загрязнений способствует такой реакции. [c.216]

    Сплав алюминия и, неизвестного двухвалентного металла раст-вор1Иля в концентрированной азотной кислоте. Объем выделившегося газа равен 4,48 л. При обработке такого же количества сплава раствором щелочи выделялось 6,72 л газа. 0предел1ите качественный и процентный состав сплава, если (Известно, что пр(И растворении в концентрированной серной кислоте 12,8 г неизвестного металла, входящего в состав сплава, выделяется 4,48 л оксида серы (IV). Рассчитайте объем взрасходованного. 40%-ного раствора гидроксида натрия (пл. 1,44). [c.14]

    Галлий, индий и таллий с водой не взаимодействуют. Разбавленные растворы обычных кислот действуют на галлий и индий, но не иа таллий последний взаимодействует лпшь с насыщенными элементарным кислородом водой и растворами кислот. На все эти металлы действует азотная кислота и особенно сильно царская водка. Галлий и индий медленно растворяются в водных растворах щелочей с выделением водорода таллий со щелочами не взаимодействует. Галлий, индий и тал,лий образуют с други.мп металлами многочисленные сплавы, содержащие часто интерметаллические соединения. [c.336]

    При избирательной коррозии, как и при обесцинковании, происходит преимущественное растворение одного или нескольких компонентов сплава. При этом образуется пористый скелет, сохраняющий первоначальную форму изделия. Избирательная коррозия характерна для сплавов благородных металлов, таких как Аи—Си или Ли—Ag, и используется на практике при рафинировании золота. Например, сплав Аи—Ай, содержащий более 65 % золота, устойчив в концентрированной азотной кислоте, как и само золото. Однако сплав, содержащий около 25 % Аи и 75 % Ag, реагирует с концентрированной НЫОз с образованием АёНОз и чистого золота в виде пористого остатка или порошка. Медные сплавы, содержащие алюминий, могут повергаться коррозии, аналогичной обесцинкованию, о преимущественным растворением алюминия. [c.28]

    Еще Фладе заметил [6], что пассивная пленка на железе тем дольше остается устойчивой в серной кислоте, чем длительнее была предварительная пассивация железа в концентрированной азотной кислоте. Другими словами, пленка стабилизируется продолжительной выдержкой в пассивирующей среде. Франкенталь [17] заметил также, что хотя для пассивации 24 % Сг—Ее в 1 н. НаЗО достаточно менее монослоя Оа (измерено кулонометрически), пленка становится толще и устойчивее к катодному восстановлению, если сплав некоторое время выдержать при потенциалах положительнее потенциала пассивации (см. рис. 5.1). Возможно,. наблюдаемое стабилизирующее действие является результатом того, что положительно заряженные ионы металла проникают в адсорбированные слои отрицательно заряженных ионов и молекул кислорода благодаря сосуществованию противоположных зарядов поддерживается тенденция адсорбционной пленки к стабилизации. Данные метода дифракции медленных электронов для одиночных кристаллов никеля [28], например, свидетельствуют о том, что предварительно сформированная адсорбционная пленка состоит из упорядоченно расположенных ионов, кислорода и никеля, находящихся на поверхности металла приблизительно в одной плоскости. Этот первоначальный адсорбционный слой более термоустойчив, чем оксид N10. При повышенном давлении кислорода на первом слое образуется несколько адсорбционных слоев, состоящих, возможно, из Оа. В результате образуется аморфная пленка. С течением времени в такую пленку могут проникать дополнительные ионы металла, особенно при повышенных потенциалах, становясь подвижными в пределах адсорбированного кислородного слоя. Окамото и Шибата [29] показали, что пассивная пленка на нержавеющей стали 18-8 содержит НаО аналогичные результаты получены для пассивного железа [30]. [c.83]

    Металлическое серебро, имеющее примеси, в частности медь, перерабатывают следуюпиш способом. Серебро растворяют в разбавленной азотной кислоте, раствор выпаривают и нитраты нагревают до сплавления. При этом нитрат меди частично разлагается с образованием окснда меди (II). Сплав растворяют в 10—15-процентном растворе аммиака. (Голубая окраска указывает на наличие в исходном сплаве медн.) Затем к раствору добавляют в избытке сульфит аммония или сульфит натрия и смесь нагревают до температуры 60—70 °С. При этом серебро восстанавливается до металла, а медь до аммиаката, где она одновалентна. После обесцвечивания раствора его еще продолжают нагревать в течение 15— 20 мин. Затем остаток серебра промывают способом декантации, заливают раствором аммиака и выдерживают в течение суток для растворения возможных примесей соединений меди. После этого осадок еще раз промывают и высуп1ивают. Для получения серебра в виде слптка его сплавляют в фарфоровом тигле с 5% безводной буры и 0,5% нитрата калня (считая от массы слитка). [c.139]

    Для проведения анализа на очишенную наждачной бумагой поверхность металла (сплава) помещают несколько капель (1-3) растворителя (соляная или азотная кислоты, царская водка,щелочь, бромная вода). Через определенное время (2-5 мин) образовавшийся на поверхности раствор снимают фильтровальной бумагой или капельной пипеткой, переносят в микропробирку. Искомый элемент определяют с помошью какого-либа специфического реактива. Чтобы растворитель не растекался по поверхности образца, на ней делают лунку или валик иэ воскового карандаша. [c.120]

    Алюминий и его сплавы используют в химической промышленности для изготовления деталей, работающих в высоко концентрированной и разбавленной азотной кислоте, в борной и уксусной кислотах, в среде безводного, жидкого и газообразного аммиака, сжиженных кислорода и азота, ацетона, перекиси водорода (все другие металлы являются катализаторами разложения Н2О2) и т. д. [c.181]

    Применение металлов подгруппы цинка и их соединений. Большое количество цинка и кадмия расходуется на покрытие изделий из черных металлов в целях защиты их от коррозии. Для этого применяют электрохимические и химические методы. Эти покрытия анодные. Цинк применяется в производстве цинково-угольных элементов (Лекланше), сплавов с медью (латунь, томпак) и как протектор. Кадмий — один из компонентов легкоплавких сплавов (сплавы Вуда, Розе и др.). Его используют как поглотитель нейтронов в регулировании работы ядерных реакторов. Из кадмия готовят электроды щелочных аккумуляторов. Металлическая ртуть применяется для изготовления различных приборов вакуумных манометров и насосов, выпрямителей, ртутных кварцевых ламп, барометров, термометров и т. д. Очищают ртуть фильтрованием через бумагу или замшу и, пропуская ее в виде мелких капель через колонку с раствором нитрата ртути (I), подкисленным азотной кислотой, а также перегоняя в вакууме. [c.364]

    Экстракция относится к наиболее эффективным методам разделения веществ. Экстракщюнные методы используют при извлечении различных компонентов из растительного и минерального сырья, для выделения газов из металлов и сплавов при высоких температурах, для отделения одних компонентов раствора от других и т. д. Описаны случаи экстракции расплавами солей или металлов из расплавов. Экстракционные методы на практике использовались издавна. Так, еще несколько столетий назад некоторые препараты, парфюмерные вещества, красители готовили по методикам, в которых применялась экстракция. В 1825 г. была описана экстракция брома бензолом, в 1842 г. — экстракция урана из растворов азотной кислоты, в 1867 г. — предложено использование различий в экстрагируемости кобальта, железа, платиновых металлов из тиоцианатных растворов для их разделения. В 1892 г. описана экстракция хлорида железа(1П), в 1924 г. — хлорида галлия(1П). В 20-е годы показана возможность использования органических хелатообразующих реагентов (в частности, дитизона) для экстракционного извлечения металлов в виде комплексных соединений. [c.240]

    Для анализа сплава меди с двухвалентным металлом были взяты две навески массой по 2,0 каждая. Первая была обработана соляной кислотой, что привело к частичному растворению сплава и выделению водорода объедюм 69 мл (н. у.),. Вторая навеска полностью растворилась с выделением оксида азота (IV) в растворе азотной кислоты, для которого массовая доля HNO3 составляет 48%, а объем раствора равен 12,62 мл. Определите массовый состав сплава. Ответ 10% Zn и 90% Си, [c.37]

    Непосредственно перед погружением изделий в гальваническую ванну производят декапирование — легкое протравливание металлической поверхиости для удаления тонкой пленки оксидов и обеспечения прочного сцепления металла с покрытием. Химическое декапирование цветных металлов (цинка, алюминия, меди и ее сплавов и др.) осуществляют в разбавленных растворах серной, соляной и азотной кислот, а также в 3—5%-ном растворе Na N или t N. Стальные изделия подвергают анодному декапированию в 10—15%-ном растворе Но504, иногда с включением некоторых солей (например, К2СГ2О7) в качестве добавок. Анодная плотность тока—10— 15 А/дм , продолжительность декапирования — от 30 с до 2 мин, катод — стальные или свинцовые пластины. [c.265]

    В основе многих специфических видов коррозии лежит явление ласснвации, т. е. самопроизвольный переход металла в пассивное инертное состояние в данной коррозионной среде. Наблюдая за явлением пассивации железа в азотной кислоте, еще Фарадей предположил, что пассивность железа обусловлена субмикроскопически тонкой пленкой оксида или насыщением валентностей поверхностных атомов металла кислородом. Подобное объяснение сохраняет свою силу и для объяснения пассивного поведения железа, хрома, никеля и их сплавов. В ряде случаев для перехода металла в пассивное состояние достаточно хомосорбированного монослоя (или даже доли его) кислорода. Однако пассивность для ряда металлов может возникать при образовании толстых слоев оксидов (Т1, А1) ли продуктов коррозии (РЬ, 8п, 2п). [c.32]


Смотреть страницы где упоминается термин Азотная кислота металлов и сплавов: [c.370]    [c.483]    [c.516]    [c.364]    [c.24]    [c.54]    [c.138]    [c.42]    [c.40]    [c.34]   
Справочник механика химического завода (1950) -- [ c.379 , c.383 , c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты Ба металлы

Кислоты металлы и сплавы

Металлы азотной

Металлы сплавы

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте