Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическое вращение, определение

    Для определения состава по измеряемому оптическому свойству требуется в каждом из этих методов очень тщательная калибровка. Если анализируется только один компонент, то достаточно показать, что измеряемая величина однозначно связана с концентрацией этого компонента и не зависит от присутствия других веш,еств. Большинство оптических методов, за исключением методов, основанных на измерении оптического вращения и показателя преломления, в обычных условиях не позволяет получить точность, превышающую 1%, а чаще всего точность оказывается значительно меньшей .  [c.63]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Феноменологические представления о различии показателей преломления для лучей с правой и левой круговой поляризацией не дают возможности установления более глубоких связей явления оптического вращения и молекулярных свойств. К сожалению, в теории оптической активности, как и в теориях ряда других методов, не достаточно полно решена прямая задача и поэтому ограничено решение обратной задачи метода. Прямая задача состоит в определении экспериментально измеряемого угла вращения а на основе молекулярных свойств. Взаимодействие света с веществом связано с характером волновых функций электронного состояния и их изменениями в электромагнитном поле волны. Однако волновые функции для электронных состояний многоатомной молекулы из-за [c.174]

    Среди физических методов определения конфигурации наиболее широкое распространение завоевал метод оптических смещений Фрейденберга, суть которого сводится к следующему. Пусть А — соединение с известной конфигурацией асимметрического центра, В — исследуемое соединение. Если эти вещества при одинаковых химических превращениях изменяют свое оптическое вращение в одну сторону, то можно полагать, что их конфигурации одинаковы. [c.110]


    Существуют некоторые эмпирические правила, которые используются при определении конфигурации. Так, согласно правилу Хадсона амиды Л-конфигурированных оксикислот вращают вправо. Чугаев установил правило удаленности чем дальше от центра асимметрии произведено химическое изменение в молекуле, тем оно меньше отражается на вращательной способности. Наконец, если асимметрические центры разобщены, то оптическое вращение молекулы в целом до некоторой степени подчинено аддитивной схеме (принцип оптической суперпозиции). [c.110]

    При практическом определении удельного вращения навеску оптически активного вещества а грамм растворяют в мерной колбе (пикнометре) на V мл и определяют величину оптического вращения. Формула, приведенная выше, при под- [c.42]

    Возможность отличить друг от друга оптические антиподы предоставляют прежде всего измерения оптической активности. На практике поляриметрическими измерениями пользуются для этой цели так часто, что забывают о существовании других отличий у антиподов. Так, в некоторых случаях различна, зеркальна, форма кристаллов антиподов. Различно отношение антиподов к хиральным реагентам и в особенности к ферментам. Различны спектры ЯМР в хиральных растворителях. Как видно из этого перечисления, различий набирается не так уж мало, однако тем не менее поляриметрическое определение знака оптического вращения остается наиболее часто применяемым приемом идентификации антиподов. Это нередко создает у начинающего изучать стереохимию иллюзию, что знак вращения непосредственно выражает конфигурацию, т. е. пространственное расположение заместителей вокруг хирального центра. Чтобы рассеять эту иллюзию, напомним о том, что знак вращения одного и того же антипода может меняться в зависимости от условий измерения — природы растворителя, концентрации, температуры, длины волны света. [c.63]

    Задача определения конфигурации здесь несколько более сложна, так как речь идет уже не о двух оптических антиподах, а о четырех веществах, которые характеризуются (в водном растворе) следующими величинами оптического вращения  [c.201]

    Кроме прямого химического перехода при определении конфигураций оптических антиподов используют и косвенные методы, основанные на анализе определенных закономерностей в физических свойствах соединений. Прежде всего для определения конфигурации могут быть использованы закономерности самого оптического вращения. Такие закономерности были найдены Л. А. Чугаевым еще в прошлом веке [43]. Л. А. Чугаев установил, в частности, что в гомологических рядах величина молекулярного вращения является примерно [c.205]

    С другой стороны, влияние растворителя на величину оптического вращения, по предложению Лейте [46], также можно использовать для определения конфигурации. Рассмотрим этот вариант оптического сравнения на примере определения конфигурации замещенных по ядру аналогов сг-фенилэтиламина  [c.209]

    Проведенные расчеты показали, что величина вращения должна существенно зависеть от конформации молекулы. Рассмотрим в качестве примера работу Козмана и Эйринга [104], которые исходили из представлений Куна о связи оптического вращения с определенными полосами поглощения и тем самым с определенными функциональными группами (хромофорами). Сама по себе хромофорная группа, например ОН или Вг, изолированная от влияния асимметрического центра, не может вызывать оптического вращения, ее полоса поглощения изотропна. Находящийся вблизи хромофора асимметрический центр делает полосу поглощения анизотропной такое воздействие авторы называют вицинальным влиянием первого порядка, создающим соответствующий инкремент первого порядка, входящий в качестве составной части в общую наблюдаемую величину оптического вращения. Иной тип воздействия — вицинальное влияние второго порядка — заключается в воздействии на хромофор, уже возмущенный другой группой при этом возникают инкременты второго порядка, которые по величине всегда уступают инкрементам первого порядка. [c.300]

    У1.А. ТЕРМИНОЛОГИЯ И ОПРЕДЕЛЕНИЯ УГА.1. Измерения оптического вращения в монохроматическом свете [c.246]

    В отличие от кругового дихроизма дисперсия оптического вращения (ДОВ) распространяется в спектральную область, далекую от полос поглощения образца. По мере приближения к полосе поглощения оптическое вращение возрастает либо в положительном, либо в отрицательном направлении. Затем в пределах самой полосы поглощения оно резко падает до нуля и далее принимает противоположный знак (кот-тон-эффект). Хотя наличие оптического вращения в той области, где вещество не поглощает, является определенным преимуществом метода ДОВ, интерпретировать спектры ДОВ несколько сложнее. В принципе данные, полученные с помощью указанных методов, взаимозависимы, и в обоих случаях мы получаем химическую информацию одного и того Же типа. Поскольку регистрация спектров КД и ДОВ не составляет труда, а также благодаря чувствительности этих спектров к кон-формационным изменениям и к изменениям состава среды, оба метода широко используются в биохимии. [c.25]


    УДЕЛЬНОЕ ВРАЩЕНИЕ. Величина оптического вращения при определенных условиях выражается в градусах и называется наблюдаемым оптическим вращением. Угол вращения а является функцией длины трубки, в которую помещают исследуемое соединение, структуры, концентрации оптически активного вещества, природы растворителя, температуры раствора и длины волны поляризованного света, используемого в опыте, В качестве источника света в большинстве поляриметров применяют D-линию натрия (589 нм). [c.129]

    При образовании полисахаридов из отдельных моноз гидроксил у первого углерода атома монозы участвует в образовании гликозидной связи с гидроксилом при одном из углеродов соседней монозы. При этом в зависимости от пространственного расположения гидроксила при первом атоме углерода образуется а- или р-глико-видная связь, проявляющаяся в соответствующей оптической активности образовавшегося полисахарида. Поскольку первый атом углерода в углеводах проявляет значительную оптическую активность, общая оптическая активность полисахарида в растворе позволяет ориентировочно оценивать наличие в полисахариде а-или р-гликозидных связей. Поскольку преобладающим видом связи в молекулах полисахаридов является р-связь, для большинства полисахаридов характерно отрицательное значение угла вращения. Наряду с этим в одном и том же полисахариде могут быть р- и а-связи. Например, в молекулах 4-О-метилглюкуроноксилана остатки D-ксилопираноз соединены между собой р-связью, а остатки 4-0-метил-/)-глюкуроновой кислоты присоединены к остаткам О-ксилопираноз а-связью. Оптическое вращение [а]л нейтрального ксилана, выделенного из травы эспарто и содержащего только Р-связи, составляет —102° [42]. Кислые ксиланы в зависимости от содержания уроновых кислот и арабинозы могут иметь значения [с5]о в пределах от —20 до —93°. Между величиной оптического вращения и содержанием уроновых кислот в 4-0-метилглюкуроноксиланах существует определенная зависимость чем выше содержание уроновых кислот, тем меньше отрицательное значение [а]с полисахарида. [c.149]

    Кривые дисперсии оптического вращения и спектры кругового дихроизма используют для определения структуры, конфигурации и конформации сложных оптически активных молекул, например стероидов. Другая щироко исследуемая область — белки и синтетические полипептиды. Здесь может быть получена информация о значительных кон-формационных изменениях, так как оптическое вращение очень чувствительно к конфигурациям и конформациям молекул. [c.488]

Рис. 627. Пикнометр для определения оптического вращения (а), уточка для добавления растворителя (б) и микротрубочка (разрез) в). Рис. 627. Пикнометр для <a href="/info/800520">определения оптического вращения</a> (а), уточка для <a href="/info/1409981">добавления растворителя</a> (б) и микротрубочка (разрез) в).
    Как правило, определение оптического вращения проводят при 20 °С и при длине волны линии D спектра натрия (589,3). [c.44]

    Теоретически знаки оптического вращения и кругового дихроизма взаимосвязаны при Я>Ямакс невозможно одновременное существование неравенств И > г и е/<ег- Хромофор, для которого n < Дr при ЖХмакс, называется правовращающим, если П1>Пг при Х<Хмакс, то хромофор будет левовращающим. Правовращающему хромофору соответствует положительный эффект Коттона на кривой КД, а левовращающему — отрицательный эффект Коттона (рис. 21). Это определение было введено для отнесения веществ к тому или иному классу, когда измерения оптической активности проводили для одной длины волны о — линии натрия вещества с положительным вращением относили к правовращающим, с отрицательным вращением — к левовращающим. На спектрах ДОВ и КД в доступном интервале длин воли могут наблюдаться эффекты Коттона разного знака в различных областях спектра. Поэтому неправильно по одному произвольному эффекту Коттона относить вещества к тому или иному классу. [c.37]

    Приведем некоторые общие основные правила по получению информации о структуре молекулы из спектров ДОВ и КД. Согласно правилу смещения Фрейденберга, если две сходные молекулы А и В превращаются одним и тем же химическим путем в А и В, то разности в величинах молекулярного вращения А — А и В — В будут иметь один и тот же знак. А по правилу аддитивности для любой длины волны оптическое вращение равно сумме вращений всех оптически активных хромофоров. Наиболее большой вклад в эту сумму дает хромофор, максимум поглощения которого находится ближе всех к длине волны, на которой производят измерение. Однако эти правила следует применять с большой осторожностью. Например, при изменении конфигурации части молекулы, расположенной близко к центру асимметрии, величина оптического вращения может измениться очень сильно. Это явление называется вицинальным эффектом, который приводит к трудно оценимым изменениям оптического вращения. Наряду с этими общими правилами оценки структуры веществ методами ДОВ и КД существует ряд эмпирических правил определения конфигураций для различных классов веществ (например, правило октантов для кетоиной группы в молекулах с жестким скелетом). [c.38]

    Величина угла ф, выраженная в градусах, для 1М раствора оптически активного вещества при длине оптического пути 1 м называется молярной эллиптичностью [0]. Подсчет всех коэффициентов в уравнении (11.3) и приведение к нужной размерности дают следующую зависимость между величинами [0] и Де 0]=ЗЗОО Де. Применение молярной эллиптичности неудобно из-за того, что она измеряется в градусах, что часто приводит к путанице величин кругового дихроизма и оптического вращения, а кроме того, такие единицы измерения КД скрывают физическую сущность дихроичного поглощения. Величина же Де непосредственно связана с основным определением КД. [c.39]

    Уравнения (VIII.24) и (1Х.27), например, показывают, что как явление ДОВ, так и КД зависят от вращательной силы электронного перехода, которая определяет знаки и величину обоих эффектов. Это означает, что между этими явлениями имеется определенная связь. Ее можно установить, если использовать аналогию явлений дисперсии оптического вращения и дисперсии света, а также кругового дихроизма и поглощения, о которых говорилось ранее. [c.201]

    Знак вращения зависит от длины волны используемого излучения. Более полная информация о веществе может быть получена при определении дисперсии магитного оптического вращения (ДМОВ), т. е. при изучении функции а=а(Х), или a=a(v). Однако можно изучать поглощение света луча с правой и левой круговой поляризацией или зависимость Ае(у)=е/(у) — [c.250]

    Конформация цепи определяется степенью ионизации — удаленностью pH от ИЭТ. В ИЭТ раствор полиамфолита показывает минимальные вязкости, степень набухания, растворимость и заряд. Это позволяет использовать зависимость указанных свойств от pH раствора для определения ИЭТ амфолитов. Переход а-спираль— клубок можно наблюдать и по изменению оптического вращения. Удельное вращение [а] раствора складывается из двух членов, одпн из которых соответствует внутреннему вращению, зависящему от асимметричных С-атомов каждого звена, другой — конформа- [c.287]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]

    Весьма полезными с точки зрения исследований структуры-веществ оказались измерения оптического вращения в зависимости от изменяющейся длины волны плоскополяризованнога света. Из полученных кривых дисперсии оптического вращения в определенных случаях можно делать выводы о конформации и конфигурации исследуемых органических соединений. [c.86]

    Используя метод оптического сравнения, Фрейденберг установил [44], в частности, конфигуративную связь окси- и аминокислот, что в то время было невозможно сделать прямым химическим превращением, поскольку оно идет с затрагиванием асимметрического центра, а сведения о механизмах зеакций были тогда еще не столь надежны, как теперь. 3 табл. 7 приведены величины оптического вращения ряда производных молочной кислоты (как вещества с известной конфигурацией) и двух антиподов аланина, задача определения конфигурации которых стояла в данной работе. [c.206]

    Переход от сравнения вращений при одной длине волны к сравнению кривых дисперсии оптического вращения (кривых ДОВ) увеличивает надежность определения конфигураций сравнением оптического вращения. Хорошим примером могут служить иодфеноксипропионовые кислоты, исследованные Шебергом [49] еще на заре развития спектрополяримет-рии. Кривые ДОВ трех структурноизомерных кислот, различающихся положением иода в бензольном кольце, приведены на рис. 26. [c.212]

    Обе эти формы легко различимы по характерным значениям оптического вращения. Как и в случае нативных и денатурированных белков, беспорядочно ориентированные синтетические полипептиды имеют очень малое вращение, и то время как спирализованные полипептиды обладают большой вращательной способностью. Различие между спиральной конформацией и клубком особенно заметно при рассмотрении кривых дисперсии оптического вращения в далекой ультрафиолетовой области. Блу (1961) сообщил о вращении, измеряемом десятками тысяч градусов. Для этой цели был успешно применен новый прибор для определения спектров кругового дихроизма (Руссель — Улаф, 1961). [c.712]

    В отличне от энантиомеров днастереомеры могут иметь различные температуры плавления, температуры кипения, показатели преломления, растворимость, Днпольные моменты и т. д., при реакции с определенным реагентош они могут давать различные вещества.. Оптическое вращение диастереомеров может отличаться как по величине, так н по знаку. [c.49]

    Эти бытовые примеры имеют аналогии в химии. Мы неожиданно сталкиваемся с молекулами, про которые, подобно молотку, нельзя сказать леворукие или праворукие , и с такими молекулами, которые, как перчатка, имеют леворукую или праворукую формы. Это путешествие в область влияния свойств симметрии на органические молекулы начинается с определения понятия оптического вращения , исследования тех геометрических свойств, которые придают или лишают соединения подобных молекулярных характеристик. [c.120]

    Среди приемов, очень часто используемых для решения вопросов структурной химии углеводов, необходимо особо отметить стоящий несколько особняком, очень важный метод, связанный с определением вращения плоскости поляризации. Этот метод основан на идее об аддитивности оптического вращения, высказанной впервые Вант-Гоффом под названием принципа оптической суперпозиции и примененной для углеводов Хэдсоном, сформулировавшим так называемые правила изоротации. Принцип оптической суперпозиции утверждает, что оптическое вращение молекулы аддитивно слагается из оптического вращения асимметрических углеродных атомов, входящих в эту молекулу. Хотя мнение [c.48]


Смотреть страницы где упоминается термин Оптическое вращение, определение: [c.419]    [c.1138]    [c.516]    [c.425]    [c.131]    [c.206]    [c.157]    [c.180]    [c.406]    [c.421]   
Методы общей бактериологии Т.3 (1984) -- [ c.48 , c.50 , c.85 ]




ПОИСК







© 2025 chem21.info Реклама на сайте