Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функция предсказания

    ПРИМЕНЕНИЕ ФУНКЦИИ ПРЕДСКАЗАНИЯ [c.71]

Рис. 2.25. Применение функции предсказания — экстраполяции Рис. 2.25. <a href="/info/1463767">Применение функции</a> предсказания — экстраполяции

    Нередко главной задачей эксперимента является проверка гипотез, предсказаний теорий и конкретных теоретических моделей, имеющих принципиальное значение. В связи с этим эксперимент служит одной из форм практики и выполняет функции критерия истинности научного познания в целом. [c.126]

    Вполне естественно, что экспериментальные точки должны, по возможности, равномерно покрывать весь объем изучаемого факторного пространства, т. е. все независимые переменные в эксперименте должны варьироваться равномерно во всем диапазоне своего изменения. В самом деле, если определено, что для построения какой-то эмпирической зависимости достаточно иметь 20 точек, то их следует разместить во всем изучаемом диапазоне. Если же это будут лишь точки из одной половины всего интервала, то ясно, что от зависимости, которая будет по ним построена, нельзя ожидать сколько-нибудь достоверного предсказания поведения интересующей нас функции на другой половине интервала. [c.276]

    Это является общей формулировкой условий стабильности в энергетическом выражении. Отсюда видно, что условия стабильности состоят в предсказаниях знака вторых производных характеристических функций, которые должны выполняться для каждой стабильной фазы. Далее, (40.12) показывает, что для гомогенной системы, состоящей из т компонентов, имеется т- - независимых условий стабильности. [c.205]

    Модель режимов течения [6] можно применить и к течениям в наклонных трубах, но тогда зависимости между Р, К, Т к X невозможно представить на одной диаграмме, как это было сделано раньше для горизонтальных течений на рис. 6. Это происходит потому, что III больше не являются функцией только X, зависят также и от угла наклона трубы. Чит ателю, заинтересованному в последовательном предсказании режимов течения в наклонных трубах, следует обратиться к оригинальной статье [6], а также к более детальному обзору [2]. В [И] было показано, что большое влияние наклона на границу между расслоенными перемежающимися режимами течения (рис. 7) можно успешно предсказать с помощью методологии 16]. [c.185]

    Явный вид данной функции найден экспериментально [5]. Так как это имеет большое значение для возможности предсказания стабильности эмульсии, обсудим подробнее анализируемую зависимость. [c.418]

    Пока что мы еще не пытались с помощью термодинамики предсказывать, может ли быть самопроизвольной та или иная реакция. Мы только показали, что самопроизвольный характер реакции определяется при помощи двух термодинамических понятий-энтропии и энтальпии. Прежде чем перейти к интересующим нас предсказаниям, придется ввести еще третью функцию, которая связывает между собой энтропию и энтальпию. Эта функция называется свободной энергией, или свободной энергией Гиббса, по имени американского математика и термодинамика Д. У. Гиббса (1839-1903), который впервые предложил ее использовать (см. рис. 18.6). Свободная энергия G связана с энтальпией и энтропией выражением [c.183]


    В основе этой теории лежит требование совпадения размерности обеих частей равенств, выражающих связь между физическими величинами. Целесообразнее всего удовлетворить это требование, если выражать физические законы в виде соотношений между безразмерными комплексами. Теория размерностей, таким образом, позволяет излагать законы природы в форме, не зависящей от выбранных единиц. Это обстоятельство, в частности, используется для контроля физических расчетов, поскольку в применяемых уравнениях должны совпадать размерности их правых и левых частей. Теория размерностей дает возможность предсказания некоторых физических соотношений, если заранее известно, какие величины могут влиять на изучаемое явление. Рассмотрим простой пример, относящийся к зависимости давления идеального газа Р от объема V. Молекулы такого газа можно считать математическими точками и давление должно зависеть от следующих величин массы одной молекулы т, средней скорости молекул от их числа п в единице объема п1У. Следовательно, Р = (т, и, п/У). Обозначим размерность длины через Ь, массы через М и времени через Т. Интересующие нас величины имеют размерности Р — Ь МТ , т — М, и — LT и п1У — Предполагая, что функция / степенная, введем пока неизвестные показатели степени [c.366]

    При зр2-гибридизации волновые функции рг и 3, рж, Ру относятся к разным неприводимым представлениям. Это позволяет выделить я-систему из общей системы валентных электронов и описывать ее независимо от остальных электронов. Хотя такое выделение не является строгим вследствие. приближенности самого метода ССП, тем не менее во многих случаях расчет только я-электронной системы оказывается весьма целесообразным. Он отличается достаточной простотой и дает возможность при соответствующей параметризации добиться хорошего совпадения результатов расчета с экспериментальными данными, что позволяет делать некоторые предсказания относительно физических и химических свойств молекул. [c.96]

    Использование второго закона термодинамики для предсказания направления протекания химических и физических превращений существенно облегчается благодаря введению новой функции состояния 5, называющейся энтропией. [c.30]

    F- (это означает, что реакция должна протекать без барьера активации). Лишь включение поляризационных функций (d-AO на атомах углерода и фтора и р-АО на атомах водорода) ведет к предсказанию барьера и структуры ХУП как переходного состояния реакции. [c.375]

    Экспериментальное исследование нелинейных объектов также связано с рядом трудностей. Для нелинейных операторов не выполняется ни дискретный принцип суперпозиции (2.2.1), ни интегральный принцип суперпозиции (2.2.33), (2.2.34). Поэтому если имеется многомерный нелинейный оператор с несколькими входными параметрами, то, определив реакцию объекта на изменение отдельных параметров, нельзя предсказать поведение объекта при одновременном изменении всех параметров. Напомним, что для линейного оператора такое предсказание всегда возможно, и это является основой исследования линейного многомерного оператора путем его замены эквивалентной системой одномерных операторов, описывающих отдельные каналы связи в объекте. Кроме того, при исследовании нелинейных объектов нельзя ограничиться изучением реакции объекта на одно какое-нибудь стандартное воздействие. Знание отклика объекта на входное воздействие одного вида недостаточно для предсказания поведения объекта при воздействии произвольного вида. Действительно, поскольку для нелинейного объекта не выполнен принцип суперпозиции, то представление входной функции в интегральном виде (2.2.33) не дает возможности утверждать о возможности аналогичного интегрального представления (2.2.34) для выходной функции. Это означает, что для нелинейного оператора невозможно ввести характеристические функции, которые определяли бы все свойства оператора. [c.77]

    Твердость является сложной функцией от длины, энергии н типа связи между атомами в кристаллической решетке, их координационного числа, типа кристаллической решетки, направления измерения твердости, температуры и других факторов. Это приводит к некоторому взаимному несоответствию точек натрия и калия. Тем не менее предсказание правильно самый твердый щелочной металл. . . , самый мягкий —. ... [c.354]

    При помощи такого метода невозможно абсолютное предсказание свойств растворов, а возможно лишь относительное предсказание некоторых свойств, если какое-либо одно из них известно из опыта. Например, если известно давление пара над растворами как функция состава, то можно вычислить такие характеристики, как распределение [c.133]

    Функция /г(х) равна плюс или минус единице — в зависимости от того, чему равно предсказанное значение у. [c.201]

    Как уже отмечалось выше, формулы (IX, 33) и (IX, 37) дают лишь приближенное к истинному значению производной dR/dXj. Точность этого приближения зависит от приращения независимой переменной Длг,- или у- Однако априорных способов предсказания наилучшего значения у не существует. Можно лишь заметить, что допустимое указанное приращение, с одной стороны, ограничено по максимуму кривизной целевой функции в исследуемой точке (которая заранее не известна ), а с другой — по минимуму используемой точностью вычисления значений целевой функции (которая тоже заранее не известна и может существенно отличаться от точности задания значений KJ в процессе расчета). [c.487]


    Как функция Гнббса зависит от давления. Уравнение (6.2.3) показывает, что знания объема системы достаточно для предсказания зависимости G от давления. Поскольку должен быть положительным, G возрастает с увеличением давления в системе. [c.178]

    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]

    Вполне достаточным для предсказания правильных локальных одно- и двухчастичных характеристик реальной системы является представление энергии взаимодействия в виде суммы парных эффективных межмолекулярных потенциалов. Описание энергии взаимодействия системы в терминах парного эффективного потенциала адекватно описанию системы в терминах частотно зависящей диэлектрической проницаемости. И в том и в другом случае информация закладывается в виде функции, зависящей от одной независимой переменной. В одном случае роль такой переменной играет межмолекулярное расстояние, в другом —частота. Более тесную связь между парным эффективным потенциалом и частотно зависящей диэлектрической проницаемостью можно установить сравнением результатов микроскопической и макроскопической теорий. [c.167]

    Экспериментально установлено, что закономерности эффузионного разделения соблюдаются достаточно строго лишь при Я->0. Влияние давления на проницаемость паров через пористые мембраны показано на рис. 2.5, где использованы опытные данные по проницаемости бутана через пористое стекло Вп-кор при 0°С [3J. Комплекс Ai MiT)° представлен как функция относительного давления PjPv T), определяющего, согласно (2.27) и (2.28), адсорбционный потенциал. Интересно, что проницаемость заметно выше предсказанной теорией, даже Б области, где заведомо обеспечен режим свободномолекулярного течения. При дальнейшем росте давлени в порах мембраны проницаемость монотонно увеличивается, экспериментальная кривая имеет четко выраженный максимум и довольно крутую ниспадающую ветвь. [c.58]

    Такой переход от иона к радикалу хорошо известен для электродных процессов, и он был предсказан электронной теорией катализа на полупроводниках [2]. Относительные концентрации ионных и нейтральных адсорбированных частиц являются функцией положения уровня Ферми в твердом теле. В частности, для СГ2О3 (разд. П. 2.А) это можно представить как попадание дырки на центр Сг " , связывающий радикал К-, и переход этой дырки к лиганду. Образованный при этом ион перескакивает на соседний анион 0 на поверхности. [c.60]

    Для каждой функции отклика ( /.176) нужно найти только три коэффициента. Поэтому при планировании достаточно взять /2 от ПФЭ 2 . Здесь, однако, использован ПФЭ типа 2 (табл. 62), так как это позволяет точнее определить константы скоростей реакций и более подробно анализпровать отклонения величин, предсказанных уравнениями от опытных данных. [c.248]

    Основные понятия и определения. При расчете теплообменников используются зависимости, любая из которых есть количественная связь между некоторой характеристикой aппapata и влияющими на нее факторами. Например, коэффициенты теплоотдачи представляются в виде функций скоростей, свойств теплоносителей, разностей температур и т. п. Эти уравнения с успехом применяют для предсказания размеров и параметров вновь создаваемых аппаратов, о работе которых пока еще нет никаких данных. [c.257]

    Ватиллон и Джозеф-Петит (1966) показали, что линейное увеличение коэффициента затухания со временем и незначительное отклонение, предсказанное теорией Троелстра, наблюдается в разбавленных монодисперсных латексах с очень мелкими частицами (60 нм) в ранней стадии флокуляции, но в общем, это несправедливо для частиц с радиусом 1 мкм,. Для капель, сравнимых по размеру с X, рассеивание света отдельной частицей может быть рассмотрено по теории Ми (см. ван де Хулст, 1964) даже для сфер оно является сложной функцией длины волны, показателя преломления и радиуса. [c.103]

    Попытка прогнозировать реальный процесс х(1) требует от нас составления прогноза для на)6людаемой функции у(0, по-скюльку о процессе х(1) ыы судим по результатам толученным при измерении,т.е. по функции у(1). Любой прогноз поведения у(1) должен опираться на гипотезы И модели. Поэтому необходимо ввести в рассмотрение модели (прогностический) процесс 2(1), по отношению к которому оценивают качество предсказания. Прогноз основьшается на каком-либо правиле, алгоритме. Они будут рассмотрены ниже. [c.75]

    В частности, для решения задачи расчет а разделения гетероазеотропных смесей методом ректификации предлагается гибридная нейронная сеть для предсказания многокомпонетгых равновесий жидкость-жидкость-нар. Обучеш1е нейронной сети производится на основе принципа обратного распространения ошибок по экспериментальным данным с использованием оценочной функции. [c.74]

    Разумеется, при помощи такого метода невозможно абсолютное предсказание свойств растворов, а возможно лишь относительное предсказание некоторых свойств, если какое-лггбо одно из них известно из опыта. Например, если известно даг.лепие пара над растворами как функция состава, то можно вычислить такие характеристики, как распределение компонентов между фа лми, растворимость, равновесие при химических реакциях и г. д. В качестве функции, связывающей свойства растворов друг с другом, Льюисом была предложена новая величина — термодинамическая активность. [c.109]

    Электростатическая модель, предложенная Сэрсеем , основана на том, что каждая связывающая или неподеленная электронная пара имеет характеристический электростатический заряд, сконцентрированный на прямой, соединяющей центральный атом со связанным атомом или с неподеленной парой. Если принять, что все эти характеристические заряды расположены на одинаковом расстоянии от центрального атома, можно сделать заключение о форме молекулы, определяя углы между связями таким образом, чтобы отталкивание в результате взаимодействия этих характеристических зарядов было минимальным. Итак, первым шагом является расчет характеристических зарядов различных атомов в молекулах, для которых экспериментально определены углы между связями. Затем связывающим парам приписывают определенные числа электростатического отталкивания (ЧЭО), которые являются мерой электростатического отталкивания электронных пар, связывающих различные атомы, при условии, что ЧЭО для неподеленной пары принято за единицу. Значение ЧЭО в действительности является функцией плотности характеристического заряда, локализованного в какой-то произвольной точке вдоль линии связи. Оказалось, что требуется знать только два параметра — период, в котором находится центральный атом, и вид присоединенных к нему атомов. Например, значение ЧЭО, равное 0,94 для кислорода, получено независимо от того, в каком периоде расположен центральный атом это значение, как оказалось, можно успешно применять для предсказания углов между связями и для [c.219]

    Унитарная теория была органЕ1чески связа1на с такими выдающимися результатами работ Жерара, как а) предсказание и затем открытие. многих новых органических соединений б) открытие гомологии в качестве общей закономерности, связывающей состав, структуру и свойства органических соединений в) создание классификации органических соединений г) создание системы эквивалентов и отграничение понятий атома, молекулы и эквивалента. С унитарной теорией тесно связан такл<е призыв Жерара осмотрительнее относиться к так называемым рациональным формулам, раскрыварощим структуру соединений, не абсолютизировать их. Ж.ерар считал, что эти формулы - лишь относительно истинные выражения. которые резюмируют более или менее полно некоторое число превращений. Он активно выступал за то, чтобы одно химическое соединение могло характеризоваться посредством нескольких рациональных формул (т. е. развернутых формульных схем), каждая из которых полнее передавала бы особенности химических функций молекулы. Это можно рассматривать как пролог к теории резонанса Л, Полинга. [c.80]

    Квантовая теория в отличие от классической дает в основном вероятностные предсказания относительно параметров системы в данный момент времени. Состояние системы с заданным числом частиц определяется волновой функцией q, t), где q — набор обобщенных координат 1,. .., q ,. Волновая функция, в общем случае комплексная, интерпретируется следующим образом величина ф q, Щ [q, t)dq пропорциональна вероятности того, что значения координат для данной системы в момент времени t заключены в интервале от q ао q- -+ dq. Если движение системы финитно (происходит в ограниченном объеме), то интеграл oTij) ] по всем возможным значениям координат [c.147]

    Изучена возможность использования краун-соединений, циклодекстринов и других макроциклов в качестве компонентов хроматофафических фаз для расширения диапазона селективности при анализе органических соединений разных классов. Полученные закономерности использованы для анализа кортикостероидов в сыворотке крови, лекарственных препаратов и пестицидов ряда хлорфеноксикарбоновых кислот. Предложен способ количественного анализа с использованием ВЭЖХ с УФ детектированием, не требующий наличия препаратов сравнения определяемых веществ. Разработан не имеющий аналогов в мировой практике алгоритм предсказания порядка газохроматофафического элюирования изомеров, основанный на сравнении их внутримолекулярных динамических параметров (колебательные и вращательные энергии). Предложен новый принцип поиска оптимальных функций для аппроксимации зависимостей физикохимических констант органических соединений от числа атомов углерода в молекуле. [c.99]

    Один из аспектов динамики химических реакций связан с предсказанием качественной динамики реакционной смеси на основе информации о топологии реакционной сети и зависимости скоростей от концентраций различных соединений. Для этой проблемы естественным оказывается теоретико-графовый подход, поскольку структура реакционной сети может быть закодирована в направленном графе, ребра которого взвешены в соответствии с внутренними скоростями реакций. Это в свою очередь приводит к факторизации управляющих уравнений, в результате которой эффекты стехиометрии, структуры сети и феноменология скорости реакции могут быть изучены раздельно. На этой основе легко получить некоторые результаты, связанные с динамикой нестационарных и стационарных состояний, при использовании известных или легко доказываемых результатов теории графов. В частности, возможно классифицировать стационарные состояния и разработать алгоритм для определения того, какие из различных типов стационарных состояний, если они вообще возможны, могут существовать в данной системе. Этот подход ведет также к полному описанию глобальной динамики подмножества того, что называется вершинноуправляемыми сетями. Может быть показано, что уравнения для таких систем всегда имеют единственное стационарное состояние, являющееся глобально асимптотически устойчивым. Кроме того, когда такой тип системы периодически возмущается внешним источником, отклик всегда асимптотически периодичен с периодом, равным периоду возмущающей функции. Следовательно, система этого типа может служить в качестве совершенного преобразователя частоты — свойство, необходимое при решении многих биологических задач. [c.322]

    В наиболее совершенной и разработанной форме такой почти механистический подход к рассмотрению молекулярной структуры представлен в наборе эмпирических силовых полей, или методах молекулярной механики, широко применяемых в качестве не квантово-механических способов расчета структуры и свойств молекул, а также дтя моделирования переходных состояний. методы, хотя и подвергаются критике из-за отсутствия недвусмысленных критериев выбора правильных потенциальных функций и/или наборов привлекаемььх параметров, оказываются исключительно полезными не только для объяснения химических явлений, но и для предсказания предпочтительных путей реакций, а потому становятся инструментами планирования органического синтеза (см. серию обзоров в СЬепг.Кеуз., 93,4 Ь ", (1993), а также монографию [4]), [c.549]

    На рис. 1.13-1.15 приведены результаты проведенного анализа. Как следует из полученных в результате расчета данных, при величине параметра роста трещины менее 0,5 последняя не развивается (приращение длины стремится к нулю). При параметрах роста более 0,7 наблюдается хаотическое поведение рассматриваемой функции, заключающееся в осциллирующем характере распространения трещины. Предсказание поведения (1.7) в последнем случае практически невозможно в связи с тем, что разброс значений, в указанной зависимости от номера итерации, составляет около 0,5 от ALn. Такой вид роста трещины возможен только на стадии механического долома. Наибодее реалистичными являются значения параметра роста не более 0,5 (в соответствии с тем, что процессу разрушения предшествует достаточно длительный инкубационный период). Затухание коррозионных процессов в связи с пассива- [c.22]

    Использовать функцию свободной энергии 1ля предсказания констант равнопесия реакции при разных температурах (стр. 294). [c.275]


Смотреть страницы где упоминается термин Функция предсказания: [c.70]    [c.69]    [c.70]    [c.494]    [c.491]    [c.314]    [c.87]    [c.78]    [c.142]    [c.201]    [c.548]    [c.253]    [c.287]    [c.98]   
Автоматизация биотехнологических исследований (1987) -- [ c.69 ]




ПОИСК







© 2025 chem21.info Реклама на сайте