Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стерические контакты между группами

    Для небольшого числа ассоциированных единиц энергетически выгодна симметрия точечной группы. При построении структуры ограниченной величины используется аналогичный принцип. Среди всех контактов между идентичными единицами имеется один, энергетически наиболее выгодный. Если реализуется только этот контакт, то образуется спираль, т. е. линейная группа неограниченного размера. Ее размеры окажутся ограниченными, если на первом витке возникнут стерические затруднения (рис. 5.16, б). Однако в этом случае последний контакт, а значит и вся структура, [c.111]


    Концентрированные кремнеземные золи стабилизируют / с целью предупреждения образования силоксановых связей между частицами. Этого можно достичь, во-первых, за счет образования ионных зарядов на частицах, что обеспечивает удерживание таких частиц порознь из-за сил отталкивания, и, во-вторых, путем адсорбции, в общем случае мономолекулярного слоя инертного вещества, что позволяет отделить поверхности кремнеземных частиц друг от друга настолько, чтобы предупредить возможность прямого контакта силанольных групп между собой. Последний случай называется стерической стабилизацией. [c.436]

    В структуре есть короткие контакты между карбонильными группами атомов Мо и Мп — в основном для групп С(4)0(4> и С(8А8) (С(4).. . С(8) 2,88, С(3)... С(8, 3,12, С<4)... Оад 2,92, С(8)... 0(4) 3,18 А) Этими стерическими трудностями объясняются наиболее существенные искажения валентных углов. Максимально отклоняются от линейности группы МпС(4)0(4, и Mo (8) (8)(ZMп- (4)-0(4) 169,4°, Мо-С(8)-0(8) 159,5°). [c.80]

    Рассмотрим эти принципы более подробно. При наличии на поверхности носителя функциональных групп, способных вступать в химические реакции с функциональными группами фермента с образованием ковалентных связей получение иммобилизованного фермента сводится к исключительно простой процедуре, аналогичной используемой для физической адсорбции фермента на носителе. Методических различий здесь действительно нет в раствор фермента вводится носитель и фермент на нем адсорбируется, однако адсорбция при химической иммобилизации необратимая — фермент пришивается к носителю одной или несколькими ковалентными связями (рис. П,о). Тесный контакт белка с носителем может оказаться нежелательным, например, из-за неблагоприятного изменения микросреды фермента, стерических и диффузионных ограничений. Выходом из такой ситуации становится отдаление молекулы иммобилизованного фермента от поверхности носителя на некоторое расстояние. Для этой цели применяются сшивающие реагенты различной длины. Они могут быть как простыми бифункциональными (т. е. с двумя одинаковыми или различными по химической природе реакционноспособными группировками), так и весьма сложными полифункциональными реагентами, в том числе построенными из отличающихся по химической природе звеньев с различными по прочности связями между ними. Тем не менее зде сь используется один общий принцип ковалентной иммобилизации — сшивка фермента с носителем посредством сшивающего агента (рис. 11,6). [c.78]


    Некоторые природные аминокислоты стабилизируют а-спираль [ала, гли, мет и др.), другие, наоборот, дестабилизируют (вал, сер, цис и др.). Разрушение спира-лизации происходит за счет невыгодных стерических контактов между спиральной цепью и боковыми цепями, имеющими разветвление при атоме С (вал). Другая причина связана с образованием между амидной группой основной цепи и у-гете-роатомом в боковой цепи сильной водородной связи, которая может конкурировать с внутрицепочечной водородной связью между пептидными группами. [c.202]

    Характер и степень связывания молекул вещества сорбентом сильно зависят от взаимодействия вещества с элюентом. В этом взаимодействии участвуют те же силы динольного и дисперсионного характера, а также водородные связи и электростатические силы. Совокупность всех взаимодействий обусловливает степень растворимости вещества в элюенте. Склонность к адсорбции и растворимость вещества выступают как конкурирующие характеристики, соотношением которых можно управлять путем изменения состава элюента. Изменение силы и характера адсорбции вещества при этом может происходить как за счет изменения физических параметров его молекул (заряда, конформации), так и за счет изменения эффективности конкуренции молекул элюента за центры сорбции, а также в результате того, что под действием элюента могут изменяться и сорбционные свойства самого сорбента. Особо надо отметить воздействие на фактор стерического соответствия молекул вещества и сорбента, т. е. возможности совпадения расстояний между способными взаимодействовать атомами и химическими группами на поверхностях обоих партнеров, когда контакт между ними оказывается неодноточечным. Этот фактор может придавать адсорбционной хроматографии особенно высокую степень избирательности. [c.222]

    Дан<е при замещении атомов водорода (вандерваальсов радиус 0,12 нм) атомами фтора (радиус 0,135 нм) цепь полимера не мон<ет остаться полностью вытянутой. Торсионный угол, равный в полиэтилене 180°, в полифторэтилене принимает значение 166° — этого изменения достаточно для снятия напрян<ения в контактах между атомами фтора, и при этом атомы фтора и соседние атомы углерода еще не мешают друг другу. Сформировавшаяся в результате спиральная структура напоминает структурные элементы, встречающиеся в белках и других биополимерах. Итак, образование спиральной конформации — это естественное следствие взаимного стерического вытеснения одних групп атомов другими [12, 13]. [c.87]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]


    Очевидно, что если количество связанного поверхностно-активного вещества меньше эквивалентного, то дифильные противоионы могут перемещаться от звена к звену. Следовательно, реальные системы, о которых идет речь, качественно вполне адекватны только что описанной статистической модели Т. М. Бирштейн и др. Перемещение притягивающихся друг к другу противоиопов должно сопровождаться изменением конформации полимерной цепи. В состоянии равновесия реализуются конформации (или конформация), соответствующие компромиссу между стремлением к максимуму контактов между гидрофобными группами связанных противоиопов и к минимуму стерических и энтропийных напряжений в цепочке. Все эти соображения превосходно оправдываются на опыте. Особенно информативной оказалась система поли-/,-лизин — додецилсульфат натрия, конформационное состояние которой можно контролировать методами дисперсии оптического вращения и кругового дихроизма [c.290]

    Координация атома металла в комплексе Ru O(Py)TPhP октаэдрическая. Атом Ru смещен из экваториальной плоскости (длина связи Ru—N 2,052 А) в сторону группы СО на 0,079 А, по-видимому, за счет сильного связывания Ru—СО. Расстояние от атома Npy до плоскости порфинового ядра составляет 2,114 А. Связь Ru—N 2,193 А длиннее, чем в других комплексах Ки с пиридином. Связь Ru—Npy удлинена, возможно, за счет гранс-влияния СО-группы, а также за счет стерических затруднений между пиридином и порфирином. Угол ф = 26,1° имеются короткие контакты 2,51—2,60 А между орто-атомами Нру и атомами С и N порфинового кольца. Порфиновое кольцо плоское в лределах 0,06 А. [c.243]

    М—N (имидазольный) и тремя другими связями металл—лиганд (и, следовательно, в случае Си перпендикулярными к единственной занятой 02-орбитали). Два имидазольных кольца, занимающих смежные координационные положения в октаэдрическом или квадратно-плоскостном комплексе, соприкасались бы одно с другим, если бы они были копланарны, поэтому кольца так повернуты относительно связи М—N (имидазольный), чтобы между ними не было контакта [64]. В целом вращение вокруг связи М—N (имидазольный), по-видимому, определяется не электронными факторами, а стерическими требованиями остатка гистидина, находящегося в состоянии покоя, которые возникают за счет контактов между имидазольными группами и соседними лигандами, а также за счет связывания водородными связями свободного (пиррольно-го) атома азота имидазола. [c.179]

    N-6-7. Это в общем типично для ферментативных процессов. Оказывается, что в обычных условиях среднее время образования такой активной конфигурации составляет т 10 - 10 " с , что совпадает с временами оборота фермента в условиях субстратного насыщения. В растворе для аналогичной реакции это время намного больше даже при больших коэффициентах диффузии. Причина состоит в том, что, попав в ограниченную область в плотноструктурированной среде, функциональные группы "находят" друг друга и сближаются на короткие расстояния раньше, чем они "разбегутся" в разные стороны, как это происходит в растворе. Вместе с тем величина т 10 - 10 " с намного больше, чем времена релаксаций отдельных групп, что является следствием достаточно жестких стерических условий для протекания реакции. Увеличение числа функциональных групп и необходимых одновременных контактов между ними увеличивает время достижения многоцентровой активной конфигурации. Общая скорость ферментативного катализа определяется именно временем образования нужной конформации при спонтанном сближении соответствующих групп в активном центре. Последующие за этим электронные взаимодействия происходят гораздо скорее и не лимитируют общую скорость катализа. [c.129]

    Рассматривая взаимодействия между всеми атомами, расстояния между которыми зависят только от этих двух углов, можно определить стерически разрешенные значения пары (/). и ф . Области разрешенных значений ф и ф. не сокращаются при учете взаимодействий, зависящих одновременно от поворотных углов соседних остатков, таких, как ф j и Ф/ ,. Например, расстояние между О и R j зависит от углов ф., ф-и ф ,, но когда углы Ф и ф. находятся в пределах ранее определенных допустимых областей, никакие контакты между О. и Rj. , невозможны. Таким образом, при фиксированной в транс-положенш амидной группе повороты в данном остатке взаимозависимы, но в соседних остатках стерически независимы. [c.241]

    При изучении водных растворов ди- и олигосахаридов, так же как и в случае моносахаридов, внимание уделяется в первую очередь тому, как растворитель оказывает влияние на конформации растворенного вещества. Проблемы, возникающие при исследовании моно- и дисахаридов, во многом сходны. Однако дисахариды образуют растворы, в которых сосуществует значительно большее количество аномерных и таутомерных форм. Положение осложняется еще и тем, что моносаха-ридные остатки олигосахарида способны к вращению около гликозидной связи [29, 30]. Дополнительные конформации возникают за счет внутримолекулярных гидрофобных взаимодействий [56]. При этом между СН- или СНг-группами обоих остатков возникает контакт и молекула дисахарида, образованного а-аномерными моносахаридными кольцами, как бы складывается (для р-аномеров складывание молекулы невозможно из-за стерических препятствий). [c.82]

    В исследовании взаимодействий полифункциональных гормонов и рецепторов с привлечением синтетических аналогов не исключены ситуации (они не предсказуемы, поскольку выбор аналогов, как правило, случаен), когда наиболее предпочтительная конформация синтетического пептида стерически комплементарна активному центру рецептора, но необходимый комплекс тем не менее не образуется, так как модифицированная последовательность не содержит остатков, необходимых для образования эффективных контактов с функциональными группами рецептора. Возможен, конечно, и прямо противоположный случай, приводящий к тому же результату. Принципиально слабым местом в используемом в настоящее время подходе к установлению зависимости между структурой и функцией пептидов и, в частности, гормонов является то, что он базируется на случайном поиске синтетических аналогов методом проб и ошибок Поэтому, отдавая должное усилиям в экспериментальном и теоретическом изучении искусственно модифицированных последовательностей энкефалинов, следует сказать, что при существующем интуитивном выборе модельных соединений можно рассчитывать лишь на частный успех. Качественный прогресс здесь можно ожидать только при строго научном, а не случайном подборе аналогов, иными словами, при отходе от метода проб и ошибок к методу, обладающему предсказательными возможностями и доказательной силой. Первая попытка в этом направлении [28, 29] основывается на решении обратной структурной задачи, т.е. на сознательном, целенаправленном конструировании химического строения немногочисленных искусственных аналогов, пространственное строение которых в своей совокупности отвечает набору низкоэнергетических, физиологических активных состояний природного гормона (см. гл. 17). Детально структурнофункциональная организация природных пептидов будет обсуждена в следующем томе издания "Проблема белка". О первых успехах рентгеноструктурного анализа в изучении трехмерных структур рецепторов рассказывается во втором томе издания [98. Гл. 3, 4]. [c.353]

    Потенциалы включают отталкивание электронных оболочек, дисперсионные силы вандерваальсова притяжения и электростатические взаимодействия. Для удобства вычислений целесообразно объединить все три невалентные силы в одну простую потенциальную функцию (или силовое поле), которая традиционно называется потенциалом Ван-дер-Ваальса. Для этого необходимо еще более упростить представление об электростатическом взаимодействии. Прежде всего допускают, что контакты образуются только между ближайшими соседями и усредняют электростатические взаимодействия по всем относительным взаимным ориентациям, стерически допустимым для двух контактирующих групп >С=0 и Н— [c.43]

    В силу стерических препятствий не все гидроксильные группы поверхности могут быть вовлечены в эту реакцию. Доступность гидроксильных групп, оставшихся на поверхности кремнезема после реакции с трнметилхлорсиланом, для адсорбирующихся молекул воды изучалась в работе [90]. Исследовались изменения инфракрасных спектров в результате изотопного обмена атома Н гидроксильных групп ОН модифицированного три-метилхлорсиланом кремнезема на атом О молекул пара ВгО. Из спектрограмм, приведенных на рис. 39, следует, что обмен поверхностных гидроксильных групп ОН на 00 в атмосфере пара ОгО, за исключением групп ОН, блокированных у мест контакта глобул и внутри глобул аэросила, у исходного немодифи-цированного образца происходит полностью. Гидроксильные группы, оставшиеся на поверхности после модифицирования между привитыми триметилсилильными группами, обмениваются медленно и в значительно меньшей степени. [c.137]

    Л. Полинг и Р. Кори рассмотрели все возможные конформации в минимумах торсионных потенциалов вращения вокруг связей С —N и С —С и пришли к выводу, что а-спираль и складчатый лист отвечают наиболее предпочтительным ориентациям смежных пептидных групп. Что же касается у-спирали, то она не оказалась в числе низкоэнергетических структур. При учете только торсионного потенциала эта спираль, по оценке Полинга и Кори, менее стабильна, чем а-спираль, на 2,3 ккал/моль. В отличие от компактной а-спирали, имеющей хорошие ван-дер-ваальсовы контакты, у-спираль представляет собой более рыхлую цилиндрическую структуру с отверстием около 2,5 А. Л. Полинг и Р. Кори не только сформулировали требования к геометрии полипептидной цепи и предложили удовлетворяющие им структуры, но и проанализировали имеющийся для белков и синтетических пептидов экспериментальный материал [67—71]. Они пришли к заключению, что а-спираль и -структура весьма распространены среди фибриллярных и глобулярных белков, а также гомополипептидов. В частности, было предложено, что а-кератин и другие белки этой группы имеют структуры, близкие а-спирали, а Р-кератин состоит из слоев складчатого листа, между которыми находятся двойные слои а-спиралей. К суперконтракционной форме кератина и миозина была отнесена у-спираль. Для коллагена Полинг и Кори предложили трехцепочечную, скрученную в жгут конформацию. В тройной спирали коллагена полипептидные цепи также имеют спиральную форму с меньшим шагом. Из-за большого содержания в коллагене пролина и оксипролина (30%) а- и у-спирали не могут реализоваться по стерическим причинам и из-за отсутствия многих водородных связей. Поэтому для единичных цепей коллагена предложена спираль с винтовой осью 9-го порядка. [c.23]

    Степень соответствия между антигенной детерминантой и анти-генсвязывающей областью активного центра антитела иммунологическая специфичность) определяется химической и пространственной комплементарностью, которая обусловлена, с одной стороны, взаимодействием электронных облаков реагирующих химических групп, с другой — стерическими силами отталкивания. Если структуры антигена и активного центра не соответствуют друг другу, то их притяжение будет слабым, а отталкивание сильным. Важным моментом в образовании прочных специфических комплексов является наличие множественных контактов, позволяющих, несмотря на слабость отдельных единичных взаимодействий, прочно удерживать антиген в активном центре. Замена отдельных атомов или групп в молекуле антигена или в антигенсвязывающих центрах приводит к ухудшению связывания. [c.34]

    Механизмы самосборки основаны на слабых взаимодействиях. В первую очередь ориентирующее влияние на молекулы начинают оказывать дальнодействующие электростатиче- ские силы (на расстоянии 0,7 нм). Затем взаимное притяжение молекул дополняется водородными связями и, наконец, на расстоянии 0,1 нм начинают проявляться ван-дер-ваальсовы и гидрофобные взаимодействия. Ван-дер-ваальсовы силы возникают между нейтральными атомами и молекулами вследствие их поляризации. Избирательность механизма самосборки обеспечивается благодаря существованию у молекул биополимеров участков узнавания, комплементарных к определенным локу-сам молекул-партнеров. Комплементарными (дополняющими друг друга) называют стерические структуры, которые могут входить в контакт с несколькими атомами или группами атомов, способными к попарным нековалентным взаимодействиям. Этим обеспечивается высокое сродство и специфичность образования такого рода комплексов. Самосборка молекул происходит со снижением свободной энергии и потому самопроизвольно. Так как в процессе участвуют лищь слабые связи, самосборка молекул обратима. [c.319]


Смотреть страницы где упоминается термин Стерические контакты между группами: [c.316]    [c.296]    [c.33]    [c.402]    [c.557]    [c.113]    [c.113]    [c.402]    [c.557]    [c.78]   
Биофизическая химия Т.3 (1985) -- [ c.138 ]




ПОИСК







© 2025 chem21.info Реклама на сайте