Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт аминокислот активного транспорта

    Аминокислоты очень легко проникают в клетку. Доказано, что содержание аминного азота в клетках значительно выше, чем в среде. Коэффициент распределения аминокислот равен 200—900. Транспорт аминокислот нельзя объяснить законами простой диффузии. Надо полагать, что имеет место активный транспорт веществ, в котором участвуют особые переносящие вещества — пермеазы. Транспорт аминокислот через мембраны связан с потреблением энергии. В аминокислотном транспорте также наблюдается антагонизм — валин мешает проникновению фенилаланина аланин, лейцин, гистидин мешают проникновению глицина. О-Формы аминокислот менее антагонистичны по своим свойствам, чем Ь-формы. Микроэлементы в клетках могут накапливаться в больших количествах, чем в окружающей среде. [c.17]


    Наконец, в клетках широко представлен вторично-активный транспорт, в процессе которого градиент одного вещества используется для транспорта другого. С помощью вторично-активного транспорта клетки аккумулируют сахара, аминокислоты и выводят некоторые продукты метаболизма, используя градиент Ма, создаваемый в ходе работы Ма /К -АТФазы (см. рис. 9.5). [c.305]

    Современные представления о проблеме транспорта веществ через мембраны (включая мембраны эпителиальных клеток кишечника) не позволяют точно охарактеризовать молекулярный механизм транспорта аминокислот. Существует два представления, по-видимому, дополняющих друг друга о том, что требуемая для активного транспорта энергия образуется за счет биохимических реакций (это так называемый направляемый метаболизмом транспорт) или за счет энергии переноса другого транспортируемого вещества, в частности энергии движения ионов Na (или других ионов) в клетку. [c.426]

    Различная скорость проникновения аминокислот через мембраны клеток, установленная при помощи метода меченых атомов, свидетельствует о существовании в организме активной транспортной системы, обеспечивающей перенос аминокислот как через внешнюю плазматическую мембрану, так и через систему внутриклеточных мембран. Несмотря на тщательные исследования, проведенные в разных лабораториях, тонкие механизмы функционирования активной системы транспорта аминокислот пока не расшифрованы. Очевидно, таких систем существует несколько. В частности, А. Майстером предложена оригинальная схема транспорта нейтральных аминокислот через плазматическую мембрану, которая, по-видимому, активна в почечных канальцах, слизистой оболочке кишечника и ряде других тканей. Сущность этой гипотезы можно представить в виде схемы  [c.430]

    Для понимания движущих сил, участвующих в активном транспорте разных типов молекул (электронейтральных, несущих положительный или отрицательный заряд), следует помнить, что в цитоплазме более щелочная среда и суммарный отрицательный заряд. Незаряженные молекулы (глюкоза, галактоза, нейтральные аминокислоты) переносятся в клетку вместе с протонами за счет обоих компонентов Ар,н+—А А и ДрН. [c.104]

    Регуляция процессов активного транспорта, обеспечивающего поступление подавляющего большинства необходимых прокариотам веществ, происходит на уровне синтеза переносчика и его функционирования. Биосинтез белковых компонентов многих транспортных систем регулируется по типу индукции. Глюкоза, транспортная система которой у большинства прокариот конститутивна, подавляет образование транспортных систем других сахаров и ряда органических кислот путем катаболитной репрессии. Исключение составляют некоторые облигатно аэробные прокариоты, у которых транспорт органических кислот конститутивен, а индуцируемой является транспортная система глюкозы. Избыток субстрата в среде может репрессировать синтез соответствующей транспортной системы. Это особенно характерно для аминокислот. В этом случае регуляция транспорта координирована с регуляцией их последующего метаболизма. Обнаружена также регуляция транспорта по типу отрицательной обратной связи, когда субстрат, [c.124]


    При вторично-активном транспорте градиент ионов (Na" К" , Н и др.), созданный на мембране функционированием систем первично-активного транспорта, используется для транспорта других молекул, например углеводов, некоторых аминокислот, анионов и др. [c.311]

    В качестве примера первично-активного транспорта можно привести транспорт, осуществляемый На /К -АТФ-азой, как одной из наиболее важных и широко распространенных активных транспортных систем в плазматической мембране животных клеток. Эта система, получившая название Na -К -насоса, отвечает за поддержание в клетке высокой концентрации и низкой Na путем переноса внутрь клетки, а Na из клетки наружу против градиента их концентрации и поэтому требующей затраты АТФ. Оказывается, в животной клетке внутриклеточная концентрация ионов калия примерно в 30 раз выше, а ионов натрия в 10 раз ниже, чем в окружающей среде. Такая асимметрия ионного состава определяет содержание воды и ионный состав в клетке, электрическую возбудимость нервных и мышечных волокон, служит движущей силой для транспорта в клетку сахаров и аминокислот, является важным фактором в процессе биосинтеза белка. [c.311]

    Известны другие механизмы активного транспорта аминокислот через плазматическую мембрану. Так, А. Майстером предложена оригинальная схема трансмембранного переноса аминокислот, получившая название у-глута-мильного цикла. [c.366]

    Симпорт - перенос одного вещества зависит от одновременного (или последовательного) переноса другого вещества в том же направлении. Например, глюкоза, аминокислоты могут транспортироваться Ма+-зависимой системой симпорта. При этом ион Ма транспортируется по градиенту концентрации (вторичный активный транспорт), а молекула глюкозы, присоединенная к тому же переносчику, против градиента концентрации. [c.61]

    Активный транспорт — основной термин, используемый для описания ряда механизмов, по которым растворенное вещество переносится через биомембрану в направлении, противоположном его градиенту концентраций. Один из распространенных механизмов заключается в сопряженном транспорте, при котором затрудненный перенос одного растворенного вещества проходит одновременно с легким переносом другого растворенного вещества (гл. 9). В качестве примера осуществления такого транспорта можно привести систему с сопряженными ионами натрия для сахаров и аминокислот [12] и систему с сопряженными протоном для лактозы. Натрий-калиевый насос вводит два иона К+ и удаляет три иона Ыа+, и клетка гидролизуется в результате гидролиза аденозинтрифосфата (АТФ), который транспортирует два иона кальция для каждой молекулы АТФ. [c.329]

    Следует упомянуть о другом важном факте. Концентрирование химически аналогичных вешеств внутри клетки при активном транспорте может происходить без затраты энергии путем обмена. Было показно, что поток какой-либо аминокислоты, например глицина, внутрь клеток (опыты проводились с клетками асцитного рака Эрлиха) стимулируется потоком другой аминокислоты изнутри во внешнюю среду. Причем ток одной аминокислоты и противоток второй примерно равны. Подобное же наблюдение было сделано на примере активного переноса сахаров (глюкозы, ксилозы, маннозы) в эритроцитах. Введенная выше общая схема активного транспорта объясняет это явление. Действительно, поскольку ферментативная реакция (1) обратима, то в присутствии большой концентрации сходного, но не идентичного метаболита а внутри клетки у внутренней поверхности мембраны будет идти ферментативный обмен  [c.180]

    В основе представления об активном транспорте через мембрану лежит тот факт, что удаление какого-то одного вещества из клетки является движущей силой активного переноса других веществ. Так, активный перенос ионов Ма+ из клетки ( натриевый насос ) приводит к образованию градиента концентрации этих ионов, направленного внутрь клетки, который и обусловливает активный перенос ионов калия, глюкозы и аминокислот внутрь клетки. Если удаление ионов N3+ из клетки не компенсируется поступлением внутрь других ионов, по-видимому, происходит возникновение градиента электрического потенциала ( электро-генный насос ). Предполагают, что этот тип натриевого насоса является первичным механизмом при возникновении трансмембранного потенциала в мышечных клетках (обеспечение действия кальциевого насоса ) (см. стр. 430). Необходимо отметить, что все системы переноса через мембрану работают за счет энергии АТФ или других носителей энергии. [c.431]

    Натрий-калиевый насос необходим животным клеткам для поддержания осмотического баланса (осморегуляции). Если он перестанет работать, клетка начнет набухать и в конце концов лопнет. Произойдет это потому, что с накоплением ионов натрия в клетку под действием осмотических сил будет поступать все больше и больше воды. Ясно, что бактериям, грибам и растениям с их жесткими клеточными стенками такой насос не требуется. Животным клеткам он нужен также для поддержания электрической активности в нервных и мышечных клетках и, наконец, для активного транспорта некоторых веществ, например сахаров и аминокислот. Высокие концентрации калия требуются также для белкового синтеза, гликолиза, фотосинтеза и для некоторых других жизненно важных процессов. [c.190]


    АКТИВНЫЙ ТРАНСПОРТ В КИШЕЧНИКЕ. Всасываясь в тонком кишечнике, продукты переваривания пищи должны пройти через клетки эпителия, выстилающего стенку кишки. Затем глюкоза, аминокислоты и соли через клетки, образующие стенки кровеносных сосудов, поступают в кровь и доставляются кровью в печень. Вскоре после приема пищи концентрация продуктов ее пере- [c.190]

    Натрий, выкачиваемый из клетки натрий-калиевым насосом, стремится диффундировать обратно в клетку. В мембране находится транспортный белок, которому для вьшолнения его функций требуются натрий и глюкоза. Они транспортируются в клетку вместе пассивно, за счет облегченной диффузии. Активный транспорт аминокислот совершается при участии аналогичного белкового натрий-аминокислотного переносчика активной частью этого процесса является выкачивание натрия наружу. [c.191]

    Аминокислоты поступают в клетку через плазматическую мембрану в результате активного транспорта в клетке они доставляются к рибосомам [c.198]

    Всасывание конечных продуктов переваривания осуществляется ворсинками подвздошной кишки. Как было показано на рис. 8.21 Г, Д Д строение ворсинок идеально подходит для выполнения этой функции. Моносахариды, дипептиды и аминокислоты попадают в кровеносные капилляры либо путем диффузии, либо путем активного транспорта (рис. 8.23 и 5.22). [c.318]

    Каково преимущество активного транспорта в процессе всасывания моносахаридов, дипептидов и аминокислот  [c.318]

    ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА, Через плаценту от матери плоду передаются глюкоза, аминокислоты, липиды, неорганические соли и витамины. Глюкоза передается в результате облегченной диффузии с помощью специальных белков-переносчиков, описанных в разд. 5.9.8, а такие ионы, как натрий, калий и кальций — главным образом путем активного транспорта, хотя не исключено, что в случае ионов частично имеет место диффузия. Аминокислоты, железо и витамины проникают через плаценту с помощью активного транспорта. Важность соблюдения диеты во время беременности рассматривается в гл. 8. [c.93]

    Всасывание аминокислот в кишечнике может включать разные механизмы их транспорта через стенку кишечника и капилляров осмос, диффузию и активный транспорт. Особая роль в процессе всасывания принадлежит ворсинкам слизистой оболочки кишечника, в которых происходит АТФ-зависимый транспорт аминокислот, сопряженный с транспортом ионов натрия (Na" ) или водорода (Н+). [c.250]

    Биохимические функции пиридоксальфосфата связаны с его участием в процессе усвоения белков и жиров активный транспорт свободных аминокислот через клеточные мембраны и реакции трансаминирования и декарбоксилирования аминокислот (см. главу 12). [c.154]

    В тканях млекопитающих обнаружено несколько основных систем активного транспорта, таких, как натриевый и кальциевый насосы (Ыа -насос и Са +-насос), системы транспорта глюкозы и других сахаров и системы транспорта аминокислот. Наряду с этим высокоселективные транспортные системы, включающие специфические белковые переносчики, могут функционировать при переносе определенных нонов из внеклеточной во внутриклеточную среду. Примечательные примеры представляют собой участие апоферри-тина в регуляции передвижения железа из просвета кишечника в плазму крови (гл. 32) и активный транспорт анионов, опосредованный полипептидами, присутствующими в мембране эритроцита (гл. 32). Здесь кратко рассмотрена только первая система. [c.377]

    Многие ионы металлов необходимы клеткам живых организмов. Это Na, К, Mg, Са, Мп, Fe, Со, Си, Мо, Zn. Они составляют 3% массы человеческого тела. Na(I), К(1) и Са(П) особенно важны как участники так называемого ионного насоса , который сопровождается активным транспортом метаболитов и энергетическими процессами. Другие металлы, такие, как Zn(II) и Со(И), обнаружены в различных металлоферментах, где они координируются с аминокислотами и ускоряют реакции, происходящие в активном центре [214]. Они выступают как сверхкислотные катализаторы, оказывающие прямое или матричное действие. В то же время ионы Fe(II) и u(II) предпочтительно связываются с простетическими группами порфиринового типа и участвуют во многих системах электронного переноса. [c.342]

    Мы уже кратко упоминали о системах активного транспорта, используемых бактериями при поглощении аминокислот (гл. 5, разд. Б, 2). Другая интересная система активного транспорта, у-глутамильный цикл [27], функционирует в клетках млекопитающих. В основе этого цикла лежит использование у-карбоксильной группы глутамата, т. е. того карбоксила, с которым в глутамине связан аммиак. В процессе транспорта [c.93]

    Нек-рые П.-регуляторы иммунитета. К таким П. относят гормоны тимуса, тетрапептид тафтснн Thr—Lys—Pro—Arg (букв, обозначения см. в ст. Аминокислоты), являющийся фрагментом домена С 2 иммуноглобулина G, и пептидный антибиотик циклоспорин А, обладающий иммунодепрессив-ными св-вамн. К пептидным антибиотикам относят также актиномицины и др. Важную роль в активном транспорте ионов через биол. мембраны играют ионофоры. [c.471]

    В клетки животных и бактерий активно транопортируются аминокислоты [38, 39]. У Е. oli существуют специфические системы переноса почти для каждой аминокислоты, а для некоторых аминокислот таких систем даже несколько. Обычно наряду с системой, для которой характерны высокое сродство к аминокислоте и способность перекачивать ее из областей с очень низкой концентрацией, существуют параллельно функционирующие системы с рецепторами, не обладающими столь высоким сродством к субстрату. Системы транспорта аминокислот, а также сахаров достаточно хорошо исследованы у бактерий [38, 45, 46]. В одной из таких систем, детально изученной с помощью химических и генетических методов, процесс проникновения различных сахаров (в том числе альдогексоз) внутрь клетки сопряжен с распадом фосфоенолпирувата (табл. 3-5). Судя по всему, сахара при функционировании этой системы проходят через внутреннюю мембрану в виде фосфатных эфиров (групповая транслокация) [46а, 46Ь]. В другой системе транспорт аминокислот и лактозы сопряжен с системой переноса электронов (гл. 10) в связанной с мембраной окислительно-восстановительной цепи. Считают, что эта система не зависит от синтеза АТР. [c.359]

    Вторая группа пептидов гораздо более разнообразна структурно и Заключает в себе все соединения, содержащие две или более аминокислот, связанных амидной связью, но которые обладают некоторыми структурными свойствами, не характерными для белков. В нее входят такие необычные аминокислоты, которые не найдены в белках, как аминокислоты с D-конфигурацией или в более окисленном состоянии, связанные необычной амидной связью, например Глутамилпептиды, связанные сложноэфирной связью (депсипептиды), и различные циклические структуры. Эти пептиды в основном выделены из микроорганизмов, и многие из них обладают значительной биологической активностью. Некоторые из них токсичны для растений и животных, в то время как другие нащли применение в качестве антибактериальных, противоопухолевых и противовирусных агентов. Ионофорные пептиды нащли применение в качестве мощного средства при изучении транспорта ионов через природные и искусственные мембраны. Вероятно, в будущем с помощью более утонченных биологических эксперимен- [c.285]

    Известно, что многие ферменты содержат в активном центре 8Н-груп-пы, абсолютно необходимые для каталитической реакции. При их окислении ферменты теряют свою активность. Предполагают, что одной из главных функций глутатиона является сохранение этих ферментов в активной восстановленной форме. Окисленный глутатион может восстанавливаться под действием глутатионредуктазы, используя НАДФН. Кроме того, глутатион может оказывать ингибирующее действие на некоторые белки. В частности, известная реакция инактивации инсулина под действием глутатионинсулинтрансгидрогеназы, в которой 8Н-глутатион является донором водородных атомов, разрывающих дисульфидные связи между двумя полипептидными цепями молекулы инсулина. Установлена также коферментная функция глутатиона, в частности для глиоксилазы I. Ранее обсуждалось участие глутатиона в транспорте аминокислот через клеточную мембрану. [c.453]

    Имеются примеры ионных регуляторных комплексов, в которых рецептор и ионный канал, по-видимому, находятся в разных молекулах. Так, некоторые ацетилхолиновые рецепторы, найденные в нейронах Aplysia, после связывания с ацетилхолином увеличивают натриевую проводимость. Другие ацетилхолиновые рецепторы того же организма вызывают быстрое возрастание проводимости ионов хлора, тогда как третьи — медленное возрастание калиевой проницаемости [6]. Если принять, что связывающий компонент этих рецепторов один и тот же, что никак не доказано, то он должен действовать в комбинации то с калиевыми, то с натриевыми, то с хлорными каналами [7]. Хотя такие комбинации и казались постоянными, следующие наблюдения привели к выдвижению гипотезы плавающего , или мобильного , рецептора. Согласно этой гипотезе рецепторы не связываются в постоянные комплексы, а плавают в мембране и взаимодействуют с различными активными структурами транспортными системами, ферментами и т. д. (рис. 9.6). Имеется, например, только один тип рецептора для инсулина, который, однако, раздельно регулирует целый ряд мембранных функций транспорт глюкозы, аденилатциклазную, фосфодиэсте-разную, Ка+,К+-АТРазную, Са +-ЛТРазную активности, а также транспорт аминокислот. Напротив, в жировых клетках крыс имеются, по крайней мере, восемь различных рецепторов, и все они регулируют аденилатциклазную активность. Связывание [c.255]

    Тирозин-гидроксилаза регулируется по принципу обратной связи катехоламинами, а также цДМФ. Образование дофамина находится под контролем декарбоксилазы ароматических аминокислот, обладающей широкой субстратной специфичностью. Синтез норадреналина катализируется медьсодержащим ферментом — дофамин-р-гидроксилазой. И наконец, образование адреналина, связанное с метилированием норадреналина, происходит под действием фенилэтаноламин-Л -метилтрансферазы в цитоплазме адреналин-продуцирующих клеток. Донором метильных групп является 5-аденозилметионин. Новосинтезированные катехоламины поступают в хромаффинные гранулы посредством активного транспорта, где связываются с АТФ. Под действием нервного импульса происходит перемещение гранул к цитоплазматической мембране и выброс катехоламинов в экстрацеллюлярное пространство методом экзоцитоза. [c.155]

    Транспорт аминокислот через клеточные мембраны осуществляется в основном по механизму вторично-активного транспорта. В этом случае система активного транспорта приводится в действие не путем прямого гидролиза АТФ, а за счет энергии, запасенной в ионных градиентах. Перенос аминокислот внутрь клеток осуществляется чаще всего как симпорт аминокислот и ионов натрия, подобно механизму симпорта сахаров и ионов натрия. Энергия АТФ затрачивается на выкачивание Ка /К -АТФ-азой ионов натрия из клетки, создания электрохимического градиента на мембране, энергия которого опосредованно обеспечивает транспорт аминокислот в клетку. Известен ряд сходных по строению транспортных систем (транслоказ), специфичных к транспорту аминокислот нейтральных аминокислот с небольшой боковой цепью, нейтральных аминокислот с объемным боковым радикалом кислых аминокислот, основных аминокислот, пролина. Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте Ка" стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выще градиент Na , тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе. [c.366]

    Вначале казалось, что металлы атакуют тиоловую SH-rpynny цистеина в белке. Однако удалось снять эффект отравления добавлением свободной аминокислоты гистидина. Гистидин не может конкурировать с сульфгидрильпой группой за ионы ртути поэтому Штейн предположил, что в состав активного центра входит также гистидин — аминокислота, охотно дающая комплексы с металлами. По-видимому, эта догадка правильна. Более того, гистидин, участвующий в активном центре, находится в N-конце полипептидной цепи. Это было доказано следующими обстоятельствами реагенты, атакующие N-концевые группы белков (фтор-динитробензол, фенилизотиоцианат), необратимо ингибируют активный перенос глицерина если в качестве экспериментального материала использовать так называемую строму красных кровяных клеток, т. е. оболочки эритроцитов, остающиеся после их осмотического разрыва (гемолиза), то в веществе оболочек можно обнаружить N-концевой гистидин путем реакции с теми же реаге тами. Важное наблюдение заключалось в том, что в случае предварительного насыщения стромы гликолем (1,3-пропандиолом), когда ферментативные центры были заблокированы, нри реакции с фенилизотиоцианатом концевой гистидин в реакцию не вступал. После отмывания гликоля можно было снова заставить прореагировать гистидин с фенилизотиоцианатом. Эти опыты показывают весьма убедительно, что фермент, действующий в случае активного транспорта глицерина, содержит в своем центре гистидин и притом концевой. Вместе с тем этот опыт подчеркивает трудность, о которой мы уже говорили. В процессах активного переноса все реакции разыгрываются внутри мембраны. И ферменты интегрированы в структуре мембраны. Поэтому так сложно их изучать. Фактически мы еще не знаем с определенностью ни одной из реакций, ведущих к химической диффузии важнейших метаболитов. [c.181]

    Что касается отношения явления активного транспорта к стереоизомерии аминокислот, то и здесь наблюдаются вариации. Мембраны в высших организмах гораздо селективнее по отношению к природным 1-аминокислотам, чем оболочка бактерий или клеток асцитного рака. Чтобы происходил активный перенос, положение аминогруппы по отношению к карбоксильной должно быть а или р, но не 7- О химизме веществ-переносчиков сейчас известно очень мало. Показано, что фосфолипиды (Хокин) являются участниками транспорта многих веществ, в частности ионов. При процессах транспорта обмен фосфолипидов усиливается, что было обнаружено по проникновению в них радиоактивно меченного фосфора. Подозревают, что переносчиками являются комплексы белков с фосфолипидами. [c.182]

    Остановимся еще на энергетике активного транспорта. Мы уже упоминали о том, что энергия необходима для этого процесса, и его можно остановить, прекратив процессы дыхания и гликолиза в клетке. Во многих случаях, например при переносе аминокислот, а иногда и некоторых сахаров, можно прекратить активный перенос с помощью специфических ядов, отравляющих окислительное фосфорилирование, т. е. образование в клетке богатых энергией фосфатов типа АТФ. Типичный яд такого типа 2,4-динитрофенол ингибирует очень сильно перенос аминокислот внутрь большинства клеток. Поэтому АТФ и другие подобные соединения, вероятно, являются во многих (но не во всех) случаях теми донорами энергии В, которые нами рассматривались в общей схеме активного переноса. С этим связана также, по-види-мому, значительная аденозинтрифосфатазная активность, сосредоточенная в клеточных оболочках. Если АТФ расщепляется в процессе активного переноса метаболитов до АДФи ортофосфата, то мембрана должна содержать ферменты, действие которых эквивалентно АТФ-азе. Опыт подтверждает это предположение. АТФ-азная активность найдена была в оболочках самых разных клеток (бактерий, эритроцитов, асцитного рака). [c.182]

    Система активного переноса и транспорта через биологические мембраны чрезвычайно сложна. Рабочим телом здесь служат специальные белки, а источником энергии является аденозинтрифосфор-ная кислота (АТФ). При активном переносе первым этапом поглощения является взаимодействие поглощаемых веществ с молекулами поверхностных структур протоплазмы. Адсорбированные молекулы переносятся затем в цитоплазму посредством механизма активного переноса. Предполагается, что в этих процессах ведущая роль принадлежит специальным транспортным системам — мембранным переносчикам, природа которых еще недостаточно изучена. Одним из звеньев такой системы могут быть мембранные транспортные АТФ-азы, активируемые ионами магния, калия и натрия. Так, в последнее время из мембран некоторых микроорганизмов выделены белки, участвующие в транспорте аминокислот. Обнаружены и изучаются белковые системы, ответственные за перенос сахаров в частности глюкозы. [c.15]

    Активный перенос аминокислот — транспорт аминокислот через мембрану против градиента концентрации. Системы активного переноса аминокислот обнаружены в клетках различного типа. Известно пять таких систем, они обеспечивают транспорт ]) нейтральных аминокислот с небольшими молекулами, 2) нейтральных аминокислот с крупными молекулами, 3) основных аминокислот, 4) кислых аминокислот, 5) имин -кислот. Системы активного переноса аминокислот зависят от концентрации ионов Ма+ вне клетки чем выше концентрация указанных ионов, тем выше активность систем переноса. Системы активного переноса аминокислот в клетку против градиеета концентрации состоят из двух структурных компонентов, один из которых является специфическим белком-переносчиком, а второй — обеспечивает передачу ему энергии. [c.5]

    Активный транспорт ионов Ма и имеет большое физиологическое значение, поскольку блаюдаря ему генерируется эпектрический потенциал на плазматической мембране, что регулирует электрическую возбудимость нервных и мышечных клеток, я также обеспечиваегси активный транспорт глюкозы и аминокислот в клетки организма, в том чиспе при их всасывании в кишечнике. Активный транспорт глюкозы в клетки осуществляется за счет градиента Ма. Натрий поступает в клетку и способствует проникновению глюкозы (см. рис. 30). [c.80]

    Обновление белков синаптических структур, очевидно, происходит по общей схеме биосинтеза и самосборки мембран, но имеет и свои особенности. Предпосылки для осуществления локального синтеза в НО следующие. 1) Наличие в цитоплазме НО фонда свободных аминокислот (АК), который может пополняться за счет активного транспорта АК из межклеточной среды через пресипаптические мембраны либо за счет гидролиза лизосомальными ферментами, находящимися в НО, определенного [c.39]


Смотреть страницы где упоминается термин Транспорт аминокислот активного транспорта: [c.185]    [c.247]    [c.122]    [c.635]    [c.302]    [c.268]    [c.89]    [c.481]    [c.83]   
Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.226 , c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Активность аминокислот



© 2025 chem21.info Реклама на сайте