Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный перенос аминокислот

    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]


    Известны другие механизмы активного транспорта аминокислот через плазматическую мембрану. Так, А. Майстером предложена оригинальная схема трансмембранного переноса аминокислот, получившая название у-глута-мильного цикла. [c.366]

    В клетки животных и бактерий активно транопортируются аминокислоты [38, 39]. У Е. oli существуют специфические системы переноса почти для каждой аминокислоты, а для некоторых аминокислот таких систем даже несколько. Обычно наряду с системой, для которой характерны высокое сродство к аминокислоте и способность перекачивать ее из областей с очень низкой концентрацией, существуют параллельно функционирующие системы с рецепторами, не обладающими столь высоким сродством к субстрату. Системы транспорта аминокислот, а также сахаров достаточно хорошо исследованы у бактерий [38, 45, 46]. В одной из таких систем, детально изученной с помощью химических и генетических методов, процесс проникновения различных сахаров (в том числе альдогексоз) внутрь клетки сопряжен с распадом фосфоенолпирувата (табл. 3-5). Судя по всему, сахара при функционировании этой системы проходят через внутреннюю мембрану в виде фосфатных эфиров (групповая транслокация) [46а, 46Ь]. В другой системе транспорт аминокислот и лактозы сопряжен с системой переноса электронов (гл. 10) в связанной с мембраной окислительно-восстановительной цепи. Считают, что эта система не зависит от синтеза АТР. [c.359]

    Избирательный перенос катионов с помощью краун-соединений был описан в разд. 1.3 и 1,4. В биологических системах активный перенос аминокислот через липофильные мембраны клеток в фазу с более высокой концент- [c.301]

    Различная скорость проникновения аминокислот через мембраны клеток, установленная при помощи метода меченых атомов, свидетельствует о существовании в организме активной транспортной системы, обеспечивающей перенос аминокислот как через внешнюю плазматическую мембрану, так и через систему внутриклеточных мембран. Несмотря на тщательные исследования, проведенные в разных лабораториях, тонкие механизмы функционирования активной системы транспорта аминокислот пока не расшифрованы. Очевидно, таких систем существует несколько. В частности, А. Майстером предложена оригинальная схема транспорта нейтральных аминокислот через плазматическую мембрану, которая, по-видимому, активна в почечных канальцах, слизистой оболочке кишечника и ряде других тканей. Сущность этой гипотезы можно представить в виде схемы  [c.430]


    Крам и сотр. [3, 30 ] применили результаты своих исследований по расщеплению на оптические изомеры аминокислот (разд. 5.3.1) к переносу аминокислот. С использованием оптически активных краун-соединений они добились разделения на стереоизомеры рацемических солей аминоэфиров и первичных аммониевых солей с анионами С1 , Вг РР при пассивном переносе из одной водной фазы в другую через жидкую мембрану из хлороформа. Схематически метод разделения показан на рис. 5.11 [66]. Крам с сотр. предположил, что термодинамически движущей силой являются энтропия разведения (движущаяся сила из слоя хлороформа в направлении черной стрелки) и изменение энергии сольватации, связанное с тем, что неорганическая соль "выдавливает" органическую соль из ее начального раствора (движущаяся [c.302]

    Кроме выше перечисленных, можно отметить такие биологически активные пептиды, как глутатион, принимающий участие в окислительно-восстановительных процессах, а также в переносе аминокислот через цитоплазматические мембраны  [c.25]

    Транспорт аминокислот через клеточные мембраны осуществляется в основном по механизму вторично-активного транспорта. В этом случае система активного транспорта приводится в действие не путем прямого гидролиза АТФ, а за счет энергии, запасенной в ионных градиентах. Перенос аминокислот внутрь клеток осуществляется чаще всего как симпорт аминокислот и ионов натрия, подобно механизму симпорта сахаров и ионов натрия. Энергия АТФ затрачивается на выкачивание Ка /К -АТФ-азой ионов натрия из клетки, создания электрохимического градиента на мембране, энергия которого опосредованно обеспечивает транспорт аминокислот в клетку. Известен ряд сходных по строению транспортных систем (транслоказ), специфичных к транспорту аминокислот нейтральных аминокислот с небольшой боковой цепью, нейтральных аминокислот с объемным боковым радикалом кислых аминокислот, основных аминокислот, пролина. Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте Ка" стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выще градиент Na , тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе. [c.366]

    Из имеющихся в настоящее время данных следует, что аминокислоты могут проникать в клетки как путем простой диффузии, так и в результате активного процесса, при помощи которого они концентрируются внутри клеток. Наличие активного переноса подтверждается данными опытов, показавших, что внутриклеточная концентрация аминокислот значительно превышает концентрацию их во внеклеточной жидкости, а также, что L-изомеры аминокислот проникают в клетки значительно быстрее, чем соответствующие им D-изомеры. Перенос определенной аминокислоты в клетки разных типов может осуществляться неодинаковыми механизмами наряду с этим у клеток одного типа механизм поглощения разных аминокислот может быть различным. Явление концентрирования аминокислот играет существенную роль при всасывании аминокислот из пищеварительного канала, при их реабсорбции в почках и при переносе аминокислот из материнской крови в кровь плода [1]. [c.164]

    Кристенсен и сотрудники [32— 35] применили для изучения переноса аминокислот удачный экспериментальный объект. Эти исследователи обнаружили, что свободные клетки мышиной карциномы Эрлиха поглощают аминокислоты активнее, чем клетки большинства других тканей млекопитающих. При подходящих условиях градиенты концентрации глицина между клетками опухоли и суспензионной средой превышали 60 ммолей на 1 л воды. Активное концентрирование аминокислот тормозилось в условиях анаэробиоза, а также под влиянием цианида, арсената, 2,4-динитрофенола, малоната, ауреомицина и хлоро- [c.167]

    Функции стероидных гормонов необычайно разнообразны. Их влияние обнаруживается практически во всех биохимических системах организма. Стероидные гормоны включаются в клеточные мембраны, изменяя их проницаемость, способствуют разделению цепей ДНК в процессе образования РНК (транскрипции), повышают активность ферментов, участвующих в синтезе белка, регулируют перенос аминокислот т-РНК и т. д. [c.153]

    Следует упомянуть о другом важном факте. Концентрирование химически аналогичных вешеств внутри клетки при активном транспорте может происходить без затраты энергии путем обмена. Было показно, что поток какой-либо аминокислоты, например глицина, внутрь клеток (опыты проводились с клетками асцитного рака Эрлиха) стимулируется потоком другой аминокислоты изнутри во внешнюю среду. Причем ток одной аминокислоты и противоток второй примерно равны. Подобное же наблюдение было сделано на примере активного переноса сахаров (глюкозы, ксилозы, маннозы) в эритроцитах. Введенная выше общая схема активного транспорта объясняет это явление. Действительно, поскольку ферментативная реакция (1) обратима, то в присутствии большой концентрации сходного, но не идентичного метаболита а внутри клетки у внутренней поверхности мембраны будет идти ферментативный обмен  [c.180]


    В основе представления об активном транспорте через мембрану лежит тот факт, что удаление какого-то одного вещества из клетки является движущей силой активного переноса других веществ. Так, активный перенос ионов Ма+ из клетки ( натриевый насос ) приводит к образованию градиента концентрации этих ионов, направленного внутрь клетки, который и обусловливает активный перенос ионов калия, глюкозы и аминокислот внутрь клетки. Если удаление ионов N3+ из клетки не компенсируется поступлением внутрь других ионов, по-видимому, происходит возникновение градиента электрического потенциала ( электро-генный насос ). Предполагают, что этот тип натриевого насоса является первичным механизмом при возникновении трансмембранного потенциала в мышечных клетках (обеспечение действия кальциевого насоса ) (см. стр. 430). Необходимо отметить, что все системы переноса через мембрану работают за счет энергии АТФ или других носителей энергии. [c.431]

    Глюкоза, аминокислоты и ионы диффундируют из фильтрата в клетки проксимального извитого канальца, откуда активно переносятся транспортными системами плазматической мембраны в межклеточные пространства и щели лабиринта с помощью встроенных в мембрану белков-переносчиков. [c.27]

    Исследование конкурентных отношений в транспорте аминокислот выявило наличие восьми классов транспортных систем (А.Ьа]Ша, 1972), которые существуют для аминокислот с родственной структурой и зависят от ионного заряда и размеров их молекул. В ряде случаев одна аминокислота может транспортироваться с участием нескольких транспортных систем, выбор той или иной системы определяется составом аминокислотного пула. Для мембранного транспорта аминокислот характерен ряд особенностей а) перенос аминокислот часто происходит против высоких концентрационных градиентов б) этот процесс энергозависим в) на него влияют температура и pH среды г) он ингибируется анаэробиозом и ферментными ядами д) перенос аминокислот связан с активным мембранным транспортом ионов, в частности, он Ка-зависим е) обнаружено конкурентное торможение мембранного транспорта одних аминокислот другими и др. Такие конкурентные взаимодействия играют важную роль в патологии, когда изменяется уровень индивидуальных аминокислот в крови. Ниже мы приведем примеры таких патологических состояний. [c.40]

    Активный перенос аминокислот — транспорт аминокислот через мембрану против градиента концентрации. Системы активного переноса аминокислот обнаружены в клетках различного типа. Известно пять таких систем, они обеспечивают транспорт ]) нейтральных аминокислот с небольшими молекулами, 2) нейтральных аминокислот с крупными молекулами, 3) основных аминокислот, 4) кислых аминокислот, 5) имин -кислот. Системы активного переноса аминокислот зависят от концентрации ионов Ма+ вне клетки чем выше концентрация указанных ионов, тем выше активность систем переноса. Системы активного переноса аминокислот в клетку против градиеета концентрации состоят из двух структурных компонентов, один из которых является специфическим белком-переносчиком, а второй — обеспечивает передачу ему энергии. [c.5]

    Проблему активного переноса аминокислот через биологические мембраны интенсивно разрабатывали многие исследователи. А. Майстер (1973) предложил гипотезу переноса аминокислот через мембраны при посредстве у-глутамилтрансферазиого цикла, сущность которой ясна из рассмотрения рис. 90. Согласно этой гипотезе, центральную роль в данном процессе играет фермент у-глутамилтрансфераза. Естественно, что транслокация аминокислот через биологические мембраны осуществляется также белками-переносчиками [c.264]

    Л. активен против многих грамположит. и грамотрицат. микробов, риккетсий, спирохет, хламидий. Антибактериальное действие его весьма специфично и связано с нарушением белкового синтеза на стадии переноса аминокислот от ами-ноацилтранспортной РНК на рибосомы. Небольшие изменения в структуре молекулы Л. ведут к уменьшению или полной потере его активности. с Е Есипов [c.580]

    Следует сказать, что в настоящее время можно считать твердо установленными следующие этапы процесса биосинтеза белка. Аминокислоты активируются для синтеза б слка через образование ам ино-ациладенилатов, прочно связанных со специфическими ферментами, которые используют энергию АТФ. За этим процессом следует перенос аминокислоты к иизкомолекуляр ному полинуклеотиду, который способен связывать аминокислоты. Наконец, эти промежуточные продукты (или их активные фрагменты) внедряются в микросомный рибонуклео-протеид, что зависит от -другого нуклеотида — ГТФ. [c.265]

    Ионы щелочных металлов (Na , К )- Натрий распределен в основном снаружи, а калий - внутри клетки. Оба катиона вносят вклад в поддержание осмотического давления, передачу нервных импульсов, активный перенос сахаридов и аминокислот. Катионы Na" " и К , представляющие собой сильные кислоты, образуют комплексы с лигандами, содержащими донорные атомы кислорода (эти лиганды являются сильными основаниями). Но в живых системах эти ионы переносятся свободно, поскольку in vivo взаимодействие ионов с лигандами сравнительно слабое. Роль антибиотиков-ионофоров в активном переносе ионов через клеточные мембраны, например, в избирательном переносе натрия и калия при возбуждении мембран нервных клеток или [c.269]

    Антибиотик широкого спектра действия, но активность его невелика. Это ингибитор синтеза белка на рибосомах. При этом нарушается перенос аминокислот с аминоацил-тРНК на пептидил-тРНК, т. е. гужеротин является ингибитором трансферной реакции. [c.169]

    При интерпретации данных, относящихся к процессу переноса аминокислот, больщое значение приобретает вопрос о состоянии аминокислот внутри клетки. Вполне очевидно, что поглощение той или иной аминокислоты клеткой может зависеть от концентрации аминокислоты в окружающей жидкости, от активности системы, переносящей аминокислоту в клетку, и от превращений, которым аминокислота подвергается в реакциях клеточного обмена. Различными способами удается извлечь из клеток свободные аминокислоты однако не исключено, что в неповрежденных клетках они находятся в связанной форме. Соответствующие связи могут быть сравнительно нестойкими и способными распадаться даже при мягких условиях экстракции. Между тем данные исследований Кристенсена [32—34] и Гайнца [35] указывают на то, что легко экстрагируемые из клеток аминокислоты существуют в клетках в виде свободных аминокислот. Для удержания глицина в тех высоких концентрациях, в которых он поглощается клетками асцитной опухоли, потребовались бы столь же высокие концентрации связывающего агента данных, указывающих на наличие подобного агента, до сих пор не получено. Наблюдения, показавшие, что вместе с аминокислотами в клетки поступает вода, также говорят в пользу присутствия в клетках свободных аминокислот. В опытах со свободными раковыми клетками наблюдалась прямая зависимость между градиентом концентрации глицина и увеличением содержания воды в клетках (осмотический эффект). Гайнц [35] в опытах на клетках асцитной опухоли исследовал кинетику поступления и выхода глицина в процессе переноса и нашел, что зависимость между скоростью притока глицина в клетки и концентрацией глицина в среде можно описать уравнением Михаэлиса — Ментена. Скорость поступления глицина не снижается и даже возрастает при предварительном насыщении клеток глицином. Автор приходит к выводу, что фактором, ограничивающим скорость поглощения глицина, служит связывание глицина с каким-то компонентом клеточной стенки. Полученные им результаты согласуются с представлением о наличии глицина в клетках в свободном состоянии и указывают на то, что выход глицина происходит главным образом путем диффузии. [c.168]

    Кристенсен и его сотрудники [34, 38—42, 696—698] исследовали накопление целого ряда аминокислот клетками мышиной карциномы. Было обнаружено, что в клетках мышиной карциномы концентрируются как L-, так и D-изомеры аминокислот, причем L-изомеры — более активно. Как правило, с удлинением боковой цепи перенос аминокислот затрудняется аминокислоты, обладающие электроноакцепторными заместителями (например, орнитин, метионин, оксипролин), концентрируются клетками более активно. Присутствие метильной группы в а-положении повышает интенсивность накопления, тогда как наличие в молекуле второй карбоксильной группы обычно ее снижает. Диаминокислоты, например орнитин, лизин, а, -диампномасляная кислота и а,3-диаминопроиионовая кислота, концентрируются в клетках легче, чем соответствующие моноаминокислоты. Полученные данные согласуются с иредставлением, по которому реакции переноса протекают значительно легче, если аминогруппа находится в незаряженной форме, т. е. в той форме, которая легко реагирует с образованием ацильных производных или шиффовых оснований. Кристенсен выдвигает предположение о возможности образования шиффовых оснований как промежуточного этапа в механизме переноса аминокислот. Из участия а-метиламинокислот в таких реакциях можно заключить, что наличие а-водородного атома несущественно для переноса возможно, что отсутствие а-водородного атома повышает стабильность промежуточного шиффова основания. Быстрое поглощение диаминокислот также свидетельствует в пользу того, что они вступают с пиридоксалем в стабильные промел<уточные комплексы типа шиффовых оснований [34], Было также найдено, что отсутствие свободной карбоксильной группы или ацилирование аминогруппы снижает или полностью подавляет накопление данной аминокислоты клетками. [c.169]

    Вначале казалось, что металлы атакуют тиоловую SH-rpynny цистеина в белке. Однако удалось снять эффект отравления добавлением свободной аминокислоты гистидина. Гистидин не может конкурировать с сульфгидрильпой группой за ионы ртути поэтому Штейн предположил, что в состав активного центра входит также гистидин — аминокислота, охотно дающая комплексы с металлами. По-видимому, эта догадка правильна. Более того, гистидин, участвующий в активном центре, находится в N-конце полипептидной цепи. Это было доказано следующими обстоятельствами реагенты, атакующие N-концевые группы белков (фтор-динитробензол, фенилизотиоцианат), необратимо ингибируют активный перенос глицерина если в качестве экспериментального материала использовать так называемую строму красных кровяных клеток, т. е. оболочки эритроцитов, остающиеся после их осмотического разрыва (гемолиза), то в веществе оболочек можно обнаружить N-концевой гистидин путем реакции с теми же реаге тами. Важное наблюдение заключалось в том, что в случае предварительного насыщения стромы гликолем (1,3-пропандиолом), когда ферментативные центры были заблокированы, нри реакции с фенилизотиоцианатом концевой гистидин в реакцию не вступал. После отмывания гликоля можно было снова заставить прореагировать гистидин с фенилизотиоцианатом. Эти опыты показывают весьма убедительно, что фермент, действующий в случае активного транспорта глицерина, содержит в своем центре гистидин и притом концевой. Вместе с тем этот опыт подчеркивает трудность, о которой мы уже говорили. В процессах активного переноса все реакции разыгрываются внутри мембраны. И ферменты интегрированы в структуре мембраны. Поэтому так сложно их изучать. Фактически мы еще не знаем с определенностью ни одной из реакций, ведущих к химической диффузии важнейших метаболитов. [c.181]

    Что касается отношения явления активного транспорта к стереоизомерии аминокислот, то и здесь наблюдаются вариации. Мембраны в высших организмах гораздо селективнее по отношению к природным 1-аминокислотам, чем оболочка бактерий или клеток асцитного рака. Чтобы происходил активный перенос, положение аминогруппы по отношению к карбоксильной должно быть а или р, но не 7- О химизме веществ-переносчиков сейчас известно очень мало. Показано, что фосфолипиды (Хокин) являются участниками транспорта многих веществ, в частности ионов. При процессах транспорта обмен фосфолипидов усиливается, что было обнаружено по проникновению в них радиоактивно меченного фосфора. Подозревают, что переносчиками являются комплексы белков с фосфолипидами. [c.182]

    Остановимся еще на энергетике активного транспорта. Мы уже упоминали о том, что энергия необходима для этого процесса, и его можно остановить, прекратив процессы дыхания и гликолиза в клетке. Во многих случаях, например при переносе аминокислот, а иногда и некоторых сахаров, можно прекратить активный перенос с помощью специфических ядов, отравляющих окислительное фосфорилирование, т. е. образование в клетке богатых энергией фосфатов типа АТФ. Типичный яд такого типа 2,4-динитрофенол ингибирует очень сильно перенос аминокислот внутрь большинства клеток. Поэтому АТФ и другие подобные соединения, вероятно, являются во многих (но не во всех) случаях теми донорами энергии В, которые нами рассматривались в общей схеме активного переноса. С этим связана также, по-види-мому, значительная аденозинтрифосфатазная активность, сосредоточенная в клеточных оболочках. Если АТФ расщепляется в процессе активного переноса метаболитов до АДФи ортофосфата, то мембрана должна содержать ферменты, действие которых эквивалентно АТФ-азе. Опыт подтверждает это предположение. АТФ-азная активность найдена была в оболочках самых разных клеток (бактерий, эритроцитов, асцитного рака). [c.182]

    Система активного переноса и транспорта через биологические мембраны чрезвычайно сложна. Рабочим телом здесь служат специальные белки, а источником энергии является аденозинтрифосфор-ная кислота (АТФ). При активном переносе первым этапом поглощения является взаимодействие поглощаемых веществ с молекулами поверхностных структур протоплазмы. Адсорбированные молекулы переносятся затем в цитоплазму посредством механизма активного переноса. Предполагается, что в этих процессах ведущая роль принадлежит специальным транспортным системам — мембранным переносчикам, природа которых еще недостаточно изучена. Одним из звеньев такой системы могут быть мембранные транспортные АТФ-азы, активируемые ионами магния, калия и натрия. Так, в последнее время из мембран некоторых микроорганизмов выделены белки, участвующие в транспорте аминокислот. Обнаружены и изучаются белковые системы, ответственные за перенос сахаров в частности глюкозы. [c.15]

    Перенос в направлении, противоположном градиенту концентрации переносимого компонента, называют восходящим , а в направлении, совпадающем с градиентом переносимого компонента, — нисходящим . Кроме того, различают активный и пассивный переносы в зависимости от того, аккумулируется или рассеивается энергия. Активный перенос тесно связан с эффектом перекачки и химическими реакциями, поскольку для образования связанных состояний требуется затрата энергии. В качестве примера рассмотрим перенос аминокислоты через ее аммонийное производное по механизму, показанному на рис. 5.9. Разделим мембраной раствор трикаприлметилхлорида аммония в толуоле и введем дополнительно 0,1 М раствор КОН (в подсистему I) и 0,1 М раствор H I (в подсистему II). Наблюдается перенос аминокислоты из подсистемы I в подсистему II . В толуоле аммонийная соль является переносчиком иона Na , а ионы аминокислоты и хлора переносятся посредством соответствующего обмена. На границе подсистемы I происходит реакция обмена, а в подсистеме II — реакция нейтрализации аминокислоты. [c.166]

    Представления о передвижении как об активном переносе адсорбированных протоплазмой частиц вещества хорошо согласуются с высокими скоростями, которые установлены для этих процессов. Так, в приведенных выше опытах Курсанова, поглощенные стеблями пшеницы и ржи аминокислоты преодолевали расстояние в 30 см за 20 мин, что отвечает скорости 90 слг в 1 ч. Это во много раз выше скорости продвижения веществ, осуществляющегося путем диффузии. Такого же порядка данные были получены в лаборатории Курсанова для скорости передвижения сахарозы, меченой по черешку сахарной свеклы (70— 80 см/ч). Эти данные, в общем, согласуются с результатами целого ряда других наблюдений. Для скорости передвижения неорганических солей получены цифры 20—40 см1ч. [c.492]

    Природные (Ь-) изомеры (но не О-изомеры) аминокислот подвергаются активному переносу через кишечную стенку от слизистой ее поверхности к серозной в этом переносе может участвовать витамин В (пиридоксальфосфат). Активный транспорт Ь-аминокислот представляет собой энергозависимый процесс об этом свидетельствует его ингибирование разобщителем окислительного фосфорилирования 2,4-динитрофенолом. Аминокислоты переносятся через щеточную каемку целым рядом переносчиков, многие из которых действуют при посредстве Na+-зависимых механизмов, подобно системе переноса глюкозы (рис. 53.4). К числу Na+-зaви имыx переносчиков относятся переносчик нейтральных аминокислот, переносчик фенилаланина и метионина и переносчик, специфичный для иминокислот, таких, как пролин и гидроксипролин. Охарактеризованы и независимые от Ка переносчики, специализированные в отношении транспорта нейтральных и ли-пофильных аминокислот (например, фенилаланина и лейцина) или катионных аминокислот (например, лизина). [c.296]

    Функции плазмалеммы весьма разнообразны, поскольку они определяются процессами, происходящими как иapyлiи, так и внутри клетки. Все вещества, поступающие в клетку и удаляемые из нее, должны пройти через ц ито п л а з м а т ическу ю мембрану. Через нее идет пассивный транспорт воды, ионов, пизкомо-лекулярных веществ, а также активный перенос этих соединений и многое другое. Поглощение ионов и микромолекул (сахаров, аминокислот) осуществляется в тех случаях, когда их концентрация внутри клетки ниже, чем снаружи. Ультраструктур-ные частицы и макромолекулы (белки, рибонуклеаза) попадают в клетку путем эндоцитоза — процесса, заключающегося в образовании впячиваний плазмалеммы, которые, отшнуровываясь ОТ поверхности клетки, образуют связанные с плазмалеммой пузырьки, проникающие затем в глубь цитоплазмы. [c.30]

    Во многих случаях для переноса веществ через мембрану попользуется энергия электрохимического потенциала, например протондвижущая сила, создаваемая АТФазой, которая выводит из клетки протоны. У микроорганизмов этот электрохимический потенциал разряжается на перенос сахаров из среды в клетку против 10000-кратного градиента концентраций. У живот--ных активный транспорт аминокислот и моносахаридов идет за счет энергии пассивных потоков ионо в Ма+ и Этот транспорт называют вторичноактивным, так [c.31]

    Активный транспорт аминокислот через биологические мембраны.. Свободные аминокислоты, возникающие в результате гидролитического распада белков, используются в основном для ресинтеза белковых тел и лишь некоторая их часть подвергается дальнейшей деструкции. Кроме того, содержание свободных аминокислот в клетке постоянно пополняется за счет их синтеза de novo, охватывающего весь спектр протеиногенных аминокислот у аутотрофов и заменимых аминокислот у гетеро-трофов. Естественно, что существуют системы транспорта аминокислот через мембраны, обеспечивающие их перенос как через внешнюю клеточную мембрану, так и через систему внутриклеточных мембран, в цепь [c.263]


Смотреть страницы где упоминается термин Активный перенос аминокислот: [c.302]    [c.169]    [c.341]    [c.624]    [c.168]    [c.330]    [c.177]    [c.182]    [c.348]    [c.431]    [c.459]    [c.39]    [c.143]    [c.185]    [c.76]    [c.459]   
Биохимический справочник (1979) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Активность аминокислот



© 2025 chem21.info Реклама на сайте