Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесия при растворении и электродные потенциалы

    Нарушение равновесия (713) при наличии другого катодного процесса может также привести к растворению (коррозии) металла это происходит с металлами в расплавах солей в присутствии дополнительных катодных деполяризаторов (окислителей). При этом устанавливается необратимый электродный потенциал металла, устойчивое значение которого во времени принято называть стационарным электродным потенциалом. [c.408]


    Величина электродного потенциала определяется равновесием двух противоположных процессов — растворения и осаждения металла, зависящих от соотношения скоростей обоих процессов. [c.252]

    Влияние содержания примесей в среде и сплаве имеет общий характер и становится ощутимым после установления равновесия между растворением металла и осаждением примесей при таком равновесии активности присутствующих веществ будут соответствовать величине электродного потенциала,. вычисленного по уравнению Нернста. Следовательно, достаточно низкий уровень содержания примесей будет создавать ощутимые эффекты только через достаточно длительные периоды времени. Даже чистый цинк (фиг. 49) со- [c.97]

    Электродный потенциал. Если в чистую воду опустить, например, цинковую пластинку, то поверхностно расположенные катионы металла будут гидратироваться полярными молекулами воды. В результате этого связь поверхностно расположенных катионов с металлической пластинкой ослабляется, металл будет как бы поверхностно растворяться (рис. 18-1). Гидратированные катионы начнут вовлекаться в общее тепловое движение частиц жидкости — фактор, ведущий к диффузионному распределению катионов металла в толще жидкости, т. е. растворению металла. Однако электроны, в избытке остающиеся в металле, заряжают его поверхностный слой отрицательно. Возникает электростатическое притяжение между перешедшими в раствор катионами и поверхностью металлической пластинки. Это препятствует дальнейшему растворению металла. В системе устанавливается подвижное равновесие, которое характеризуется равными скоростями растворения металла и обратного осаждения его из раствора на поверхность металлической пластинки. [c.342]

    Стадийное протекание электродного процесса на индии и образование промежуточных низковалентных частиц накладывают глубокий отпечаток на все электрохимическое поведение индия. Только на основе стадийного механизма удается объяснить такие особенности кинетики индиевого электрода, как резкое отличие анодного и катодного коэффициентов переноса, тормозящее влияние ионов водорода на анодный и катодный процесс, ускоряющее действие галогенид-ионов на анодный процесс в области их высоких концентраций, зависимость эффективной валентности индия при его анодном растворении от потенциала и состава раствора и т. д. Более того, лишь учет стадийности электродного процесса позволяет объяснить те существенные отклонения системы 1п—1п + от состояния равновесия в отсутствие поляризации, которые наблюдаются в кислых растворах. [c.73]


    Осмотическая теория Нернста не в состоянии раскрыть физической сущности процессов, приводящих к появлению скачка потенциала на границе металл, — раствор, так как она основана на представлениях Аррениуса об электролитической диссоциации. Главный недостаток теории Аррениуса заключается в отожествлении свойств растворов электролитов со свойствами идеальных газовых систем, т. е. в игнорировании взаимодействия ионов между собой и с молекулами растворителя. Тот же недостаток присущ и теории Нернста. Развитие теории электродного потенциала повторяло ход развития теории растворов электролитов. Недостатки этой теории, так же как и ее успехи, отражались и в теории электродных потенциалов. Так, введение понятий о коэ( ициенте активности (как величине, отражающей межионное взаимодействие) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста правильную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Менделеев, и, в особенности, учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков), были важными вехами в развитии теории растворов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродом и раствором. [c.219]

    По мере перехода ионов в раствор растет отрицательный потенциал металла, обусловленный скачком потенциала на границе раздела фаз. Однако накопление ионов металла тормозит дальнейшее растворение. При каком-то определенном значении потенциала наступает подвижное равновесие в единицу времени из твердой фазы в жидкую переходит столько же зарядов, сколько из жидкой фазы в твердую (т. е. Ре Ре+2-пНгО). Одновременно устанавливается и баланс вещества. Это соответствует равновесному обратимому потенциалу,. который характеризует стремление к протеканию электродной реакции. Значение равновесного электродного потенциала связано со свободной энергией этого процесса и, следовательно, представляет собой термодинамическую величину. Ее рассчитывают по формуле Нернста [c.120]

    При отсутствии тока величина электродного потенциала определяется электрохимическим равновесием на границе соприкосновения металла с раствором. При прохождении тока через гальваническую цепь на поверхности электрода происходят различного рода реакции (например, выделение водорода или металла на отрицательном электроде и реакции выделения кислорода или растворения металлов на положительном). Вследствие этого равновесие у поверхности электрода нарушается и потенциал электрода сдвигается (поляризация электродов). Величина сдвига потенциала зависит от плотности тока (т. е. от силы тока, приходящейся на единицу поверхности электрода). Чем больше плотность тока, тем больше величина поляризации. Кроме того, поляризация зависит от природы электрода, состава раствора, температуры, природы протекающей реакции на поверхности электрода и других условий. [c.277]

    Перенапряжение характеризует отклонение от условий равновесия в электрохимическом элементе. Оно представляет собой просто дополнительное напряжение сверх того, которое теоретически необходимо для процесса электролиза. Когда на электроде происходит растворение или, наоборот, осаждение металла, перенапряжение обычно очень невелико, однако, если в электродной реакции принимают участие газы, перенапряжение может достигать величины порядка 1 В. Например, стандартный потенциал водородного электрода равен 0,0 В. Однако, чтобы на ртутном электроде мог с достаточной скоростью выделяться газообразный Н2, необходимо создать перенапряжение 1,1 В. Вместе с тем перенапряжение водорода на платинированной платине не превышает 0,05 В. В электрохимических элементах перенапряжение приводит, наоборот, к снижению напряжения элемента относительно теоретически предсказываемого, или равновесного, значения. [c.296]

    Ход определения. К испытуемому раствору, налитому в стаканчик, добавляют небольшое количество кристаллического хингидрона (по объему равное горошине). Опускают туда платиновый электрод и конец электролитического мостика для контакта с электродом сравнения и выдерживают 5 мин для установления равновесия при растворении хингидрона. После настройки потенциометра в рабочее положение измеряют э. д. с. испытуемой электродной пары. Полученные результаты проверяют неоднократно, добиваясь постоянства показаний прибора для данного испытуемого раствора. Подставляя полученное значение 9. д. с. в формулу, вычисляют pH раствора. Для более удобного и быстрого определения pH пользуются специально составленными таблицами, в которых по величине э. д. с. вычислены значения pH с учетом изменения потенциала каломельного электрода в зависимости от температуры и концентрации КС1. [c.218]


    Если система не находится в равновесии, но электрод обратим в электродной реакции, то может быть измерен стационарный потенциал. Последнее может наблюдаться при растворении электрода (например, цинкового электрода в кислоте), при катализе электродом побочных реакций, а также при образовании таких продуктов реакции, когда потенциал не зависит от активности или окисленной или восстановленной формы. Так, например, потенциал платинового электрода меняется с концентрацией сульфита, но не зависит от концентрации сульфата. Это связано с крайне малой величиной констант скоростей— 2 в реакции [c.170]

    Когда мы переходим к аномальным металлам типа железа, то их поляризуемость значительно больше. Меньшие значения тока обмена (сила тока, протекающая в обоих направлениях в условиях равновесия, когда суммарная сила тока равна нулю) дают основания считать, что в этом случае имеется существенное отличие от нормальных металлов. Отделение атомов таких металлов один от другого происходит менее легко, чем в случае нормальных металлов то же относится и к переходу ионов в процессе анодного растворения. Другими словами, энергия активации значительно выше и поляризационные кривые круче. Поэтому при работе с аномальными металлами имеется реальная возможность даже при умеренных плотностях тока достигнуть таких значений потенциала, при которых, согласно диаграмме Пурбэ, должна наступить пассивация. Это объясняет, почему аномальные металлы значительно легче пассивируются, чем нормальные металлу. Если судить по токам обмена, то в условиях, когда цинк или медь должны беспрепятственно переходить в раствор в виде ионов, подача ионов железа или никеля не обеспечивается и в силу необходимости должны возникнуть другие реакции, приводящие сначала к образованию окисла, а затем к выделению кислорода. Однако наличие хлоридов облегчает электродные реакции, и вероятность достижения потенциала пассивации понижается. [c.740]

    При помощи этого, а также ряда других методов удалось не только подтвердить сам факт обмена ионами, но и количественно оценить его. Поскольку в обмене участвуют заряженные частицы, то его интенсивность можно выразить в токовых единицах и охарактеризовать токами обмена / . Токи обмена относят к I см2 (I и ) поверхности раздела электрод — раствор они служат кинетической характеристикой равновесия между электродом и раствором при равновесном значении электродного потенциала и обозначаются / . Одни из первых работ по определению токов обмена были выголнены В. А. Ройтером с сотр. (1939). Значения токов обмена для ряда электродов приведены в табл. 10.2. Интенсивность обмена зависит от материала электрода, природы реакции и изменяется в широких пределах. По третьему принципу осмотической теории Нернста токи обмена возникают в результате существования сил осмотического давления раствора и электролитической упругости растворения металла. [c.218]

    Если в воду, в которую погружен металл, добавлять растворимую соль этого же металла, то концентрация катионов около его поверхности будет увеличиваться и равновесие растворения металла сдвинется влево, т. е. растворимость металла уменьшится величина отрицательного заряда на поверхности металла понизится. Можно подобрать такие условия (малоактив Гый металл, большая концентрация раствора его соли), что заряд на поверхности металла, погруженного в раствор собственной соли, станет положительным. В этом случае металл растворяться не будет, а, наоборот, катионы из раствора будут осаждаться на его поверхности. Итак, величина и знак заряда на поверхности металла, опущенного в раствор собственной соли, а следовательно, и величина электродного потенциала зависят от природы металла и от концентрации раствора соли. [c.145]

    Электродный потенциал В этом случае металл будет заряжаться положи-.металла может быть тельно. Разность потенциалов между пластиной ме-положительным и И1 талла и раствором зависит от природы металла и отрицательным концентрации ионов, участвуюпгих в равновесии у поверхности металла. Цинк приобретает более положительный потенциал, чем медь, так как более склонен к растворению-переходу в ионное состояние, чем к осаждению в виде металла. Два металла — цинк и медь, погруженные в раствор их ионов, могут быть соединены так, как это показано на рис. 13.1, образуя электрохимическую ячейку. Растворы сульфатов цинка и меди (И) разделены пористой перегородкой. Металлические пластины — это электроды ячейки, соединенные через вольтметр. Поскольку на электродах протекают реакции [c.305]

    Когда условный стандартный электродный потенциал металла имеет более отрицательную велич1и у, чем условный формальный окислительно-восстановительный потенциал среды, равновесие реакции коррозии (16) сильно смещено в сторону образования ионов (соединении) корродирующего металла. При благоприятных условиях (свободном доступе о и- Слителя и отводе продуктов реаиции) коррозия идет с полным разрушением (растворением) металла, что имеет место, например, при коррозии всех металлов в хлоридных расплавах, через которые непрерывно продувается хлор или. хлористый водород. [c.189]

    В цепи, содержащей металлический электрод в контакте с расплавленной солевой системой, например Сс1(МОз)2 в NaNOs—KNO3, к которой добавляется КС1, потенциал электрода при постоянном токе зависит от диффузии катионов, в данном случае d " , к границе электрод — электролит. Хотя скорость диффузии ионов к межфазной границе контролируется градиентом активности, коэффициент активности ионо в растворенного вещества вблизи электрода не зависит от расстояния, так как ионная сила определяется преимущественно концентрацией растворителя (в данном случае смеси нитратов), которая не является функцией расстояния. Поэтому изменение электродного потенциала со временем в переходных процессах зависит от изменения концентрации частиц в растворе, с которыми электрод находится в равновесии. Иными словами, измерения переходного времени позволяют определять изменения концентрации потенциал-определяющих ионов в расплаве, которые обусловлены комплексообразованием, в отличие от изменений активности в объеме электролита, обусловленных любыми причинами. Анализ переходных процессов позволяет, таким обра зом, судить о составе и концентрации каждого комплексного иона. [c.57]

    Процессы растворения металлов в жидких электролитах, при которых металлический электрод находится в растворе и образуется двойной слой, лучше- всего рассматривать исходя из представлений электрохимии, анализируя следующие факторы 1) электродный потенциал данной системы, т. е. ЭДС, возникающий между металлом и раствором, 2) вольт-амперные характеристики поляризационные кривые, или кривые Тафеля) для реакций окисления и восстановления, возможных в данной системе. Вольт-амперные кривые для процесса коррозии, в котором анодной реакцией является растворение металла, а катодный процесс —выделение на электроде Н , схематически показаны на рис. 89. Число электронов, выделяющихся в ходе анодной реакции, в условиях равновесия точно соответствует числу элек-7  [c.195]

    Таким образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а как результат его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, таким образом, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. При этом, как следует из реакции (452), при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от природы растворителя. Поэтому, в отличие от теории Нернста, величина стандартного потенциала данного электрода должна меняться при переходе от одного растворителя к другому. Подобная зависимость была обнаружена и послужила предметом исследований многих авторов (Н. А. Изгарышева, А. И. Бродского, В. А. Плескова, Хартли, Н. А. Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем меньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, где в установлении электродного равновесия участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики для ионов водорода и поливалентных катионов малых размеров. Именно такие изменения электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения [c.220]

    Чтобы графически представить реакции металла во всем диапазоне значений pH при разных значениях потенциала, следует собрать большое количество данных. Например, железо растворяется с образованием ионов Ре , которые при более высоких электродных потенциалах окисляются до Ре в очень кислой среде. Потенциал реакции растворения зависит от активности ионов двухвалентного железа (в соответствии с уравнением Нернста). Из табл. 6 имеем Е = —0,44 В при активности 10°. При активности 10 получаем Е = —0,44 — (2-0,03) = —0,5 В. Эта реакция представлена на фиг. 33 [47] в виде ряда горизонтальных линий, соответствующих различным потенциалам при разных концентрациях ионов двухвалентного железа. Реакция Ре + НгО- - РеОН + Н зависит только от pH, и с помощью константы равновесия этой реакции можно оценить изменение pH в зависимости от концентрации Ибнов Ре . На фиг. 33 эта реакция представлена рядом вертикальных линий (соответствующих различным pH). РеакцияР +Н2О- - РЮН + -Ь Н + е зависит одновременно от pH и потенциала, поэтому геометрическим местом точек, в которых активности РеОН и Р равны, является линияШ В) = 0,877 — 0,0591 рН[ 49], имеющая наклон —59,1 мВ/ед. pH. [c.74]


Смотреть страницы где упоминается термин Равновесия при растворении и электродные потенциалы: [c.190]    [c.277]    [c.151]    [c.291]    [c.383]   
Смотреть главы в:

Основные законы химии. Т.2 -> Равновесия при растворении и электродные потенциалы




ПОИСК





Смотрите так же термины и статьи:

Потенциал растворения

Потенциал электродный потенциал

Электродный потенциал



© 2024 chem21.info Реклама на сайте