Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генри молекулярной

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]


    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]

    Изучение свойств разбавленных растворов представляет не только теоретический, но и практический интерес. Достаточно напомнить о возможности определения молекулярного веса и о том, что нередко приходится иметь дело с растворами плохо растворимых веществ, которые сама природа сделала очень разбавленными. Кроме того, хотя уравнения (IV.4), (IV.6), (IV.7) и (IV.9), отражающие предельные законы, как и закон Генри, относятся к разведенным (строго говоря, к бесконечно разведенным) растворам, однако с некоторой погрешностью ими можно пользоваться и при умеренном разбавлении. Для концентрированных же растворов, где они совершенно неприменимы, ими можно воспользоваться для грубой ориентировки, что тоже небесполезно. [c.160]


    М — молекулярный вес т—константа Генри [c.12]

    В условиях развитой свободной турбулентности из уравнений массопередачи исключаются коэффициенты молекулярной диффузии, показатель же степени имеет малую [29] величину, близкую к нулю. Специальными исследованиями показано [291, [30], что соотношение между коэффициентами массопередачи для легко- и труднорастворимых газов в режиме развитой турбулентности определяется соотношением коэффициентов растворимости газов или соответственно констант Генри. Таким образом, для режима развитой свободной турбулентности будет справедлива пропорциональность [c.248]

    Рассмотренные примеры показывают высокую чувствительность определяемых с помощью газовой хроматографии термодинамических характеристик адсорбции (величин К и 51) к структуре молекул. Макроскопические (термодинамические) характеристики системы адсорбат — адсорбент связывают с ее микроскопическими характеристиками (со структурой адсорбента и молекул адсорбата) молекулярно-статистическая теория адсорбции и теория межмолекулярных взаимодействий, которые рассмотрены во второй части курса. Зная структуру молекул адсорбата и структуру адсорбента, можно решить прямую молекулярно-статистическую задачу — рассчитать константу Генри для равновесия адсорбат — адсорбент и предсказать последовательность выхода разных адсорбатов из хроматографической колонны с адсорбентом. [c.25]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]

    ЛЕКЦИЯ 9. МОЛЕКУЛЯРНО-СТАТИСТИЧЕСКАЯ ТЕОРИЯ АДСОРБЦИИ ПРИ МАЛОМ (НУЛЕВОМ) ЗАПОЛНЕНИИ ПОВЕРХНОСТИ И МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ АДСОРБАТ — АДСОРБЕНТ. РЕШЕНИЕ ПРЯМОЙ ЗАДАЧИ РАСЧЕТ КОНСТАНТ ГЕНРИ ДЛЯ АДСОРБЦИИ НА ГРАФИТИРОВАННОЙ САЖЕ МОЛЕКУЛ ИЗВЕСТНОЙ СТРУКТУРЫ [c.160]

    Молекулярно-статистические выражения константы Генри для адсорбции на инертном адсорбенте с однородной поверхностью и потенциальная энергия межмолекулярного взаимодействия адсорбат — адсорбент. Нахождение атом-атомных потенциалов, удовлетворяющих экспериментальным значениям констант Генри для адсорбции на графитированной саже опорных молекул алканов, алкенов, алки-нов и ароматических углеводородов, и проверка возможности переноса найденных потенциалов на другие углеводороды. Адсорбция дейтерированных углеводородов. Нахождение атом-атомных потен-ци-алов для кислородсодержащих соединений, в частности гетероциклических. Зависимость атом-атомных потенциалов межмолекулярного взаимодействия от электронной конфигурации атомов в молекуле. [c.160]

    Молекулярно-статистические выражения константы Генри ДЛЯ адсорбции газа на инертном адсорбенте с однородной поверхностью [c.160]

    Константа Генри К отражает, как уже отмечалось, межмолекулярные взаимодействия адсорбат — адсорбент. Чтобы связать эту макроскопическую характеристику с потенциальной энергией межмолекулярного взаимодействия, зависящей от структуры молекулы адсорбата и структуры адсорбента, надо привлечь молекулярно-статистическую теорию адсорбции. Таким путем измеряемые в термодинамических исследованиях макроскопические величины можно интерпретировать на молекулярном уровне. Главная задача будет состоять в молекулярно-статистическом расчете Ki и ее зависимости от температуры. [c.160]

    Выражения Ы—Л )/Л = Г и М 1У=с представляют соответственно адсорбцию по Гиббсу и концентрацию адсорбата в газовой фазе [см. выражение (7.2)]. Чтобы получить молекулярно-статистическое выражение для константы Генри, обратим внимание на то, что в этом случае адсорбция Г->-0 и концентрация адсорбата в равновесной газовой фазе i>- -0, т. е. можно пренебречь взаимодействием молекул адсорбата друг с другом как в газовой фазе, так и в адсорбированном состоянии. Таким образом в этом простом случае, который, как и раньше, отметим индексом 1, [c.161]


    Дальнейшие молекулярно-статистические расчеты константы Генри по уравнениям (9.25) — (9.27) или по уравнениям (9.29) — (9.31) требуют знания формы и параметров атом-атомных потенциалов межмолекулярного взаимодействия. Эти расчеты для адсорбции на ГТС показали, что различие в форме потенциалов мало влияет на результаты. Часто используют следующие три потенциала Бакингема — Корнера (6, 8, ехр) [c.168]

    Таким образом, зная структуру адсорбента (ГТС) и структуру адсорбирующейся молекулы, можно вычислить молекулярно-ста-тистическим путем константы Генри, уточнить параметры атом-атомных потенциалов и проанализировать влияние сделанных при определении этих потенциалов приближений и допущений. Используя этот метод, можно произвести идентификацию на хроматограмме веществ известного строения. На приведенной ниже схеме решению прямой задачи молекулярно-статистической теории адсорбции и удерживания соответствует движение слева направо  [c.184]

    Таким образом, константы Генри для адсорбции таких молекул зависят от потенциальной функции их внутреннего вращения и являются функцией угла внутреннего вращения а. В этом случае в уравнении (9.6) в суммах по состояниям (функциях распределения) адсорбированной и свободной молекулы Q и <3 1 надо учесть множители, соответствующие степеням свободы внутреннего вращения. Для этого под соответствующие конфигурационные интегралы надо ввести экспоненциальные выражения, содержащие потенциальную функцию внутреннего вращения и (а). Считая влияния Ф и разделимыми (параметры 157 не зависят от Ф), можнО написать следующее молекулярно-статистическое выражение константы Генри для адсорбции молекул с внутренним вращением  [c.191]

    Это необходимо учитывать при молекулярно-статистическом расчете константы Генри. [c.211]

    При отнесении адсорбции к 1 г цеолита молекулярно-статистическое выражение для константы Генри имеет вид  [c.211]

    Значения параметра a, i для парных межмолекулярных взаимодействий А... I одноатомной молекулы А благородного газа с ионами I цеолита, оцененные на основании свойств адсорбата и адсорбента, взятых в отдельности, являются приближенными. Полученные отсюда описанным молекулярно-статистическим расчетом значения константы Генри тоже приближенны. Поэто- [c.212]

    Расчет величины Бз по уравнению (12.2) встречает трудности и сделан только для одноатомных молекул. Применение метода атом-атомных потенциалов для расчета 12 с учетом взаимной ориентации сложных молекул на поверхности адсорбента еще не осуществлено. В отличие от расчета первого вириального коэффициента для адсорбции углеводородов на ГТС (константы Генри, см. лекцию 9) для расчета второго вириального коэффициента, помимо атом-атомных потенциалов фс...с и фн...с, необходим атом-атомный потенциал фн-н. Это создает дополнительные трудности на пути количественного теоретического расчета изотерм адсорбции на молекулярном уровне даже при небольших Г. [c.227]

    Развитие количественной молекулярно-статистической теории селективности жидкостной хроматографии в различных полуэмпирических приближениях облегчается при использовании такого рода корреляционных зависимостей между определенными из хроматограмм константами Генри для адсорбции из растворо в и параметрами структуры молекул компонентов для данного адсорбента и данного элюента, а затем и при изменении химии поверхности адсорбента и состава элюента. [c.283]

    Для разных по геометрической или электронной структуре молекул значения констант Генри обязательно различаются (при определенной температуре), так как они связаны с энергией молекулярного взаимодействия, разной для разных молекул. Поэтому теория линейной идеальной хроматографии приводит к выводу об обязательном хроматографическом разделении любых компонентов. [c.23]

    С тех пор в учебной литературе сложилась традиция ограничивать теорию растворов законами Вант-Гоффа, Рауля, Генри, теорией Аррениуса и другими вопросами, связанными с применением методов термодинамики. Эта традиция поддерживалась тем, что работы по теории растворов долгое время развивались преимущественно термодинамическими методами. Но начиная с 50-х годов положение изменилось. Постепенно ведущую роль стали играть спектроскопия, дифракционные методы, рассеяние света, радиоспектроскопия, акустическая спектроскопия. Резко расширились возможности изучения структуры жидких систем. Стали доступны исследованию новые, ранее неизвестные молекулярные процессы, в том числе даже такие, которые протекают в жидкостях в течение 10 °—с. Не так давно об этом можно было лишь мечтать. [c.5]

    В форме, выражаемой уравнением (У.25), закон распределения справедлив, если растворенное вещество имеет одинаковую молекулярную массу в обеих жидкостях. В случае ассоциации или диссоциации так же, как и в выражении закона Генри, необходимо учесть изменение молекулярной массы растворенного вещества при переходе из одной фазы в другую. Если в первой жидкости она равна Мт, а во второй Мц, то уравнение (У.25) принимает следующий вид  [c.122]

    Низшие меркаптаны хорошо растворимы в щелочах, но с увеличением молекулярной массы их растворимость уменьшается, йютворимость их удонлетворительно описывается законом Генри. [c.84]

    Рассмотрение нефтяных систем как молекулярных растворов господствовало достаточно долго. При этом в связи с трудностями аналитического выделения отдельных компонентов из средних и высших фракций нефти (масляных и газойлевых фракций) их характеризовали с помощью гипотетической средней молекулы. Модельные представления о строении молекулы смолисто-асфальтеновых веществ (САВ) получили широкое распространение. Характеристика таких гипотетических молекул — средняя молекулярная масса — входит во многие расчетные формулы зависимости свойств нефтяной фракции от Р, V, Т-условий и используется в технологических расчетах. Хотя сегодня достоверно показано, что это не всегда верно, поскольку молекулярная масса нефтяных фракций сильно зависит от условий ее определения (растворителя, температуры) [1]. До сих пор многие явления в нефтяных системах и технологические расчеты трактуются на основе физических законов, установленных для молекулярных растворов (законов Рауля-Дальтона, Генри, Ньютона, Дарси и т. д.). В результате теоретически рассчитанные доли отгона при выделении легкокипя-щих компонентов из нефти не совпадают с экспериментальными данными. Часто обнаруживающаяся в нефтяных системах (особенно с высоким содержанием парафинов и САВ) зависимость эффективной вязкости от скорости деформации свидетельствует о ее надмолекулярной организации. Отклонения от закона Дарси при течении таких систем впервые были подмечены в 1941 г. профессором В. П. Треби-ным. Однако эффекты нелинейного отклика, обусловленные особен- [c.172]

    На это указывает молекулярно-статистическая обработка адсорбционных данных и получение соответствующих атом-атомных потенциальных функций межмолекулярного взаимодействия атомов углерода углеводородов с атомами углерода графита. Однако для линейных и плоских молекул этот эффект меньше влияния соответствующего уменьш1ения числа атомов водорода в молекуле. Ниже приведены константы Генри К (при =—86,2°С) и начальные (при адсорбции Г- 0) дифференциальные теплоты адсорбции 1 на ГТС этана, этилена и ацетилена  [c.17]

    Рассмотрим теперь разделение на ГТС молекул с внутренним вращением. На форзаце книги приведены определенные газохроматографическим методом константы Генри К для адсорбции на ГТС дифенила и ряда метилдифенилов. У молекул, метильные группы которых расположены в положениях 2, 6, 2 и (т. е. в положениях, ближайших к связи между бензольными кольцами), существуют высокие барьеры внутреннего вращения, препятствующие этим молекулам расположиться на поверхности ГТС наиболее выгодным образом (в плоской конформации). Поэтому из колонны с ГТС в первую очередь выходит 2, 2, 6, б -тетраметилдифенил, несмотря на то что его молекулярная масса наибольшая. Сильное [c.19]

    Аналогичное влияние геометрии молекул с заторможенным внутренним вращением на удерживание на ГТС проявляется для < )енилзамещенных дифенилов — терфенилов, а также трифенил-метана. Углы поворота между бензольными ядрами в этих молекулах увеличиваются при переходе от пара- к мета- и орто-изомеру. Соответственно уменьш ается их удерживание на ГТС. Так, константы Генри в ряду п-, м- и о-терфенилов при 340°С составляют соответственно 78, 38 и 5 см /м . Молекулы трифенилметана, несмотря на большую молекулярную массу, удерживаются на ГТС еще слабее, так как центральный атом углерода, имеющий электронную конфигурацию ориентирует фенильные группы по углам тетраэдра, что мешает звеньям этих молекул приблизиться к поверхности ГИГС. [c.20]

    Хроматоскопия (хроматоструктурный анализ] — метод определения параметров структуры молекул из экспериментальных значений констант Генри с помощью молекулярно-статистической теории адсорбции и полуэмпирической теории межмолекулярных взаимодействий [c.184]

    Структура Молекулярно-статистическая теория ад- Константа Генри молекулы, сорбции при нулевом заполнении адсорбен- адсорбционного структура та и иолуэмпирическая теория межмолеку- равновесия (удер-адсорбента лярных взаимодействий живаемый объем [c.184]

    Таким образом, с помощью хроматографии стало возможно измерять константы Генри для веществ труднодоступных или недоступных для исследований статическими методами. Чтобы подчеркнуть исключительную ценность хроматографических измерений констант Генри, метод определения структурных параметров молекул на основе экспериментальных значений констант Генри был назван хроматоструктурным методом или, сокращенно, хроматоскопией. В этой лекции рассмотрены хроматоскопические определения некоторых структурных молекулярных параметров, от которых константы Генри для адсорбции на ГТС зависят достаточно сильно. [c.185]

    ЛЕКЦИЯ 11. МОЛЕКУЛЯРНО-СТАТИСТИЧЕСКИЙ РАСЧЕТ КОНСТАНТЫ ГЕНРИ ДЛЯ АДСОРБЦИИ ЦЕОЛИТАМИ И СИЛИКАЛИТОМ [c.205]

    Рассмотрим возможность молекулярно-статистического расчета термодинамических характеристик адсорбции в атом-ионном приближении для потенциальной функции межмолекулярного взаимодействия молекула — ионный адсорбент. Заряды на образующих молекулы атомах, как и истинные заряды ионов адсорбента, часто неизвестны с нужной для расчета константы Генри точностью. Поэтому следует найти атом-ионные потенциалы межмолекулярного взаимодействия и уточнить их параметры, используя экспериментальные значения константы Генри для адсорбции опорных молекул данного класса адсорбатов. Далее, как и в рассмотренном в лекции 9 случае адсорбции на ГТС, надо проверить возможность переноса полученных атом-ионных потенциалов на другие молекулы данного класса. Использование атом-ионного приближения при адсорбции на ионных адсорбентах неполярных молекул требует учета дополнительного вклада в атом-ион-ный потенциал, вносимого поляризацией неполярной молекулы электростатическим полем ионного адсорбента (индукционное притяжение, см. табл. 1.1). Кроме того, при адсорбции ионными адсорбентами полярных молекул в рамках классического электростати- ческого притяжения надо учесть взаимодействие жестких электри- ческих дипольных и квадрупольных моментов молекулы с электростатическим полем ионного адсорбента (ориентационное притяжение, см. табл. 1.1). Затруднения, связанные с локализацией этих моментов в молекуле, значительно усложняют расчеты константы Генри для адсорбции полярных молекул на ионном адсорбенте. [c.205]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]

    Из табл. видно, что при концентрациях ниже 2,00 см в 1 см воды отношение o /p o, есть постоянная величина, равная 2 Oj = 1,80. При более высоких концентрациях СОг закон Генри становится неточным. В области малых концентраций закон Генри справедлив лишь в том случае, если растворенное вещество имеет одну и ту же молекулярную массу и в газе, и в жидкости, т. е, отсутствует диссоциация или ассониация его молекул. Например, в случае хлорида водорода растворение в воде сопровождается диссоциацией на ионы Н+ и С1  [c.63]

    Отметим еще раз, что закон Генри — Дальтона применим только в тем случае, если молекулярный состав газа в растворе остается тот же, что и в газообразной фазе, и если растворимость газа мала, газ не гидратируется, не диссоциирует в растворе на ионы и т. д. Для сильно растворимых газов, для газов гидратирующихся (сольватизирующихся) и диссоциирующих (например, для водных растворов НС1, NHg, СОо и др.) закон Генри — Дальтона не применим. [c.155]


Смотреть страницы где упоминается термин Генри молекулярной: [c.510]    [c.97]    [c.168]    [c.220]    [c.221]    [c.226]    [c.281]    [c.150]   
Массообменные процессы химической технологии (1975) -- [ c.39 ]

Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.14 , c.15 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.14 , c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Генри



© 2024 chem21.info Реклама на сайте