Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Второй и третий законы термодинамики. Равновесие

    ВТОРОЙ И ТРЕТИЙ ЗАКОНЫ ТЕРМОДИНАМИКИ 1. Самопроизвольный и несамопроизвольный процессы. Равновесие [c.74]

    Согласно третьему закону термодинамики энтропия жидкой фазы, так же как и твердой, при абсолютном нуле температуры должна обращаться в нуль. В связи с этим приобретает большой интерес вопрос о распределении атомов в жидком гелии, особенно при наиболее низких температурах. Плотность жидкого гелия мала, под давлением насыщенных паров она составляет всего около 0,14 г/мл, что в значительной мере объясняется малой молекулярной массой гелия (заметим, что плотность жидкого водорода примерно в два раза меньше плотности жидкого гелия). Необычна зависимость плотности Не от температуры (рис. 61). Там же представлена температурная зависимость теплоемкости С вдоль линии равновесия жидкость — пар. При температуре 2,173 К и 49,80 10 Па плотность жидкого Не проходит через максимум, после чего функция р = /(Г) резко меняет свое направление, плотность быстро уменьшается. Теплоемкость тоже аномально зависит от температуры. Кривая теплоемкости похожа на греческую букву X. При 2,182 К теплоемкость является разрывной функцией. Здесь в жидком Не происходит фазовый переход второго рода. Температура этого фазового перехода ( Х-точки ) немного снижается при увеличении давления. Жидкую фазу при температурах, соответствующих Х-точкам и ниже, принято называть гелий II . Жидкая фаза при температурах, лежащих выше Х-точек, названа гелий 1 . [c.229]


    Из первого и второго законов термодинамики вытекают соотношения, которые в принципе позволяют вычислять характеристики равновесий при химических реакциях. Однако осуществление таких вычислений требует знания некоторых экспериментальных данных изменения энтальпии реакции при определенной температуре, например 298 К, теплоемкостей участников реакции в зависимости от температуры, константы равновесия (или свободной энергии) также при определенной температуре. Энтальпии и теплоемкости называются термическими величинами. Их измерения относительно просты и осуществляются с помощью калориметров. Значительно более трудным является определение констант равновесия, особенно для высокотемпературных металлургических реакций. Между тем развитие химии и металлургии в начале текущего столетия требовало разработки способов расчета равновесий. Поэтому было важно найти методы расчетов, основывающиеся лишь на экспериментальных данных о термических величинах. Решение задачи стало возможным в результате открытия нового принципа — третьего закона термодинамики. [c.41]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]

    Термодинамические исследования в области химической термодинамики основаны на применении первого, второго и третьего законов термодинамики. В химической термодинамике описываются методы определения тепловых эффектов химических реакций (этот раздел химической термодинамики называется термохимией), условия протекания необходимых химических реакций и способы, предотвращающие нежелательный ход химического процесса, а также методы определения условий химического и фазового равновесия системы и влияния на равновесие внешних условий. [c.10]


    Во второй части книги аппарат термодинамики используется для рассмотрения систем с фазовыми и химическими превращениями. Расчет тепловых эффектов и условий равновесия производится с использованием таблиц стандартных величин и полных энтальпий. На основе третьего закона термодинамики дается представление, 0 методе вычисления значений термодинамических функций. Кратко рассмотрены элементы кинетики химических реакций — раздела, тесно примыкающего к термодинамике химических превращений. Применение термодинамических зависимостей иллюстрируется примерами с решениями. [c.3]

    В термодинамике используются также второй и третий законы термодинамики, однако они имеют ограниченное применение. Второй закон определяет направление протекания неравновесных процессов и обеспечивает установление условий равновесия систем. Третий закон определяет абсолютную величину энтропии и обеспечивает определение изменения свободной энергии и свободной энтальпии с помощью калорических величин, что имеет важное значение только в химической термодинамике. [c.5]

    Зная величину константы равновесия реакции можно определить изменение стандартной свободной энтальпии (стандартное химическое сродство) для этой реакции и составить мнение относительно осуществимости данной реакции. Таким образом, проблема определения констант равновесия и химического сродства только на основе калорических данных, обычно имеющихся в распоряжении, связана с определением константы интегрирования, для чего первого и второго законов термодинамики оказывается недостаточно. Решение этой проблемы Нернстом (1906 г.) привело к введению новых постулатов, составляющих содержание так называемого третьего закона термодинамики. [c.183]

    Тепловые балансы составляются на основе первого начала. Расчеты фазового и химического равновесий осуществляются на основе второго начала и третьего закона термодинамики. [c.10]

    Иерархические уровни организации вещества бесконечны. На первом энергетическом уровне находятся элементарные частицы, на втором уровне -атомы, на третьем - молекулы и т.д. Согласно представлениям временных иерархий, развитой в физике Н.И. Боголюбовым и обобщенного Г.П. Гладышевым, для всех без исключения иерархических структур (выделенных по размерам и энергиям образования) [10] с уменьшением масштаба системы в иерархическом ряду, время жизни подсистемы уменьшается, время достижения системой равновесия (релаксации системы) уменьшается. Между близкими иерархическими уровнями, согласно представлениям Гладышева, внутри системы существует равновесие. Это дает возможность при моделировании системы применять законы классической равновесной термодинамики. [c.14]

    Третий закон термодинамики — закон об абсолютном значении энтропии. Он дополняет второй закон в той части, которая относится к расчетам химических равновесий на основе одних только термических свойств веществ. [c.65]

    Недавно Медведев (1961) произвел сопоставление энергий диссоциации, и теплот сублимации, полученных для ВеО, MgO, СаО, SrO и ВаО на основании измерений давлений паров (эффузионный метод без применения масс-спектрометра), методом исследований равновесий в пламени и масс-спектрометрическим методом. Медведев пользовался результатами работ большого числа авторов, причем за исключением некоторых масс-спектрометрических работ, результаты которых могут быть обработаны только по второму закону термодинамики, все остальные работы были пересчитаны с использованием третьего закона термодинамики по уравнению [c.180]

    В современной термодинамике правильно оценивается важность закона термического равновесия. Чтобы подчеркнуть значение этого закона, было предложено дать ему номер, подобно тому, как имеют номера три других основных закона термодинамики. Но так как изменение названий первого, второго и третьего начал термодинамики вряд ли можно было осуществить, то для закона термического равновесия предложили нелепо звучащее наименование—нулевой закон термодинамики. [c.31]

    Гл. 15-19 образуют третий учебный цикл, в котором рассматриваются вопросы термодинамики и химическое равновесие. Материал, касающийся первого и второго законов термодинамики, не изменился по сравнению с прежними изданиями книги, но теперь он разбит на три главы, что облегчит усвоение материала. Статистическое описание энтропии дано в более простой форме. Добавлена новая, 18-я глава по фазовым равновесиям. Поскольку этот материал излагается с привлечением количественного описания, он часто оказывается трудным для начинающих студентов в связи с этим мы значительно увеличили число примеров в тексте, пересмотрели имевшиеся упражнения и добавили новые. [c.10]


    Можно создать такие условия, при которых вышеописанные реакции будут протекать в обратном направлении. Например, повысить давления ацетилена и водорода в первых двух реакциях, увеличить концентрацию нитрата калия в третьем случае. Следовательно, химические процессы обратимы в зависимости от условий они могут протекать в прямом или обратном направлениях и никогда не идут до конца, а идут лишь до установления химического равновесия в системе. Таким образом, на химические процессы распространяется действие всеобщего закона равновесия в природе, т. е. второго закона термодинамики. [c.131]

    Третья группа — обратимые процессы, занимающие промежуточное положение между процессами, относящимися к первым двум группам. Под обратимым понимается такой процесс, в котором переход системы в прямом и обратном направлениях совершается через непрерывную серию состояний равновесия. Подобно тому как температура определяет направление теплового потока, направление процесса может быть определено по значению энтропии 5, являющейся функцией, характеризующей состояние системы. Согласно второму закону термодинамики, все самопроизвольные процессы протекают в направлении увеличения энтропии. Если бесконечно малый процесс сопровождается поглощением системой из среды тепла dQ, то [c.12]

    В современной термодинамике правильно оценивается важность закона термического равновесия. Чтобы подчеркнуть значение этого закона, было предложено дать ему номер. Ведь три других основных закона термодинамики имеют номера. Но изменение названий первого, второго и третьего начал термодинамики вряд ли [c.30]

    Обычно В курсах термодинамики рассматривают три закона первый, второй и третий — они составляют основу изучаемой дисциплины. Однако сейчас все чаще вводят в изложение термодинамики закон термического равновесия, сформулированный Р. Фаулером в 1931 г., т. е. много позже установления основных законов. Поскольку нарушать установившуюся традиционную нумерацию основных принципов было крайне нецелесообразно, новый закон и получил мало удачное название нулевого. Он сформулировал так две системы, находящиеся в термическом равновесии с третьей системой, состоят в термическом равновесии друг с другом. На первый взгляд зто положение может показаться достаточно очевидным и даже тривиальным. Однако это не так. Этот закон нельзя отнести, например, к химическому равновесию. Так, аммиак (I система) и хлористый водород (II система) могут находиться в равновесии с азотом (III система). Однако между собой они будут, как известно, быстро реагировать. [c.32]

    Задач, помещенных в конце каждой главы, стало больше, и сами задачи стали лучше, причем большая их часть снабжена ответами. Даны литературные ссылки на более поздние работы, добавлено много новых ссылок. Значительно расширен материал о силах притяжения между ионами, атомами и молекулами. В первую главу включен раздел о температуре и о нулевом законе термодинамики. Вторая глава знакомит читателя с маленьким существом, известным под именем демона Максвелла там же дан значительно более строгий вывод кинетического уравнения газов, кратко затронуты вопросы статистической термодинамики. 13 третьей главе расширен раздел о свободной энергии и химическом равновесии, обсуждается вопрос о влиянии температуры на химическое равновесие. В четвертую главу добавлен материал о гидролизе АТФ, а также о целлюлозных ионообменниках, используемых при очистке белков. В пятой главе дополнительно рассматривается кислородный электрод в нее включен также новый раздел об электрических потенциалах и о движении ионов через мембраны. В шестой главе [c.7]

    Основными объектами термодинамики являются энергетические балансы и равновесия при химических и фазовых превращениях. Решение первой группы вопросов основано на первом законе, а второй — на втором и третьем законах термодинамики. Введем некоторые необходимые термины. Системой называется совокупность тел, которая фактически или мысленно может быть выделена из окружающей среды. При этом рассматриваются макроскопические системы. Если система не взаимодействует с окру-лсающей средой, т. е. ее энергия и объем постоянны, то она называется изолированной. Если в систему поступает или из нее удаляется вещество, то она называется открытой. Если же такого обмена веществом нет, то система называется закрытой. Состояние любой системы определяется сизокупностью таких параметров, как объем, давление, температура, концентрации входящих в нее веществ. [c.12]

    Сказанное выше относилось к расчетам теизиметрических данных по третьему закону термодинамики. Нри анализе по второму закону каждое равновесие характеризуется двумя взаимосвязанными параметрами- -ДЯ, AS АВ = TAS — RTlnK. В доверительной области, где onst, должно также выполняться приближенное постоянство In в пространстве ДЯ, AS при постоянной температуре, т. е. ДЯ = aAS + Ь. Коэффициенты а ж Ь — функции температуры. Однако, если интервал температур достаточно мал, можно ввести некоторые средние значения а и Б  [c.137]

    Рассмотрен традиционный подход к анализу теизиметрических данных и показаны его недостатки. Изложен метод расчета сложных равновесий в паре по тензиметрическим данным, основанный на применении нелинейного программирования к сложным химическим равновесиям с использованием второго и третьего за . онов термодинамики. Сформулированы принципы анализа различных моделей равновесия по тензиметрическим данным. На основе рассмотрения поверхностей отклика выявлены сравнительные возможности метода при расчетах по второму и третьему законам термодинамики. Изложен метод оценки некоторых систематических погрешностей. Ил. 3. Библиогр. 17. [c.223]

    Термодинамика в широком смысле слова имеет дело 1) с энергией и ее превращ,ениями и 2) с процессами и состояниями равновесия в системах, в которых имеют место тепловые эффекты. Чистая термодинамика базируется на двух основных законах, которые выведены и всесторонне испытаны во второй половине XIX в. Третий закон установлен уже в текущем столетии несмотря на присущий ему характер основного закона, его применение значительно более ограничено, чем применение двух других законов. Третий закон находит главное приложение в области химического равновесия и будет особо рассматриваться в главе, посвященной этому вопросу. Здесь же достаточно отметить, что тогда как первый и второй законы приводят к определению функций, третий закон в сущности просто ограничивает значение одной из них (энтропии). [c.45]

    Обычно при изложении третьего закона термодинамики ограничива- ютея вторым утверждением, известным как формулировка Планка. Однако следует отметить, что первое утверждение не имеет исключения и в равной степени относится к газам, твердым телам, жидкостям и растворам. Второе утверждение, как указывалось, относится к кристаллическим телам и неприменимо к растворам, переохлажденным-жидкостям и некоторым веществам в твердом состоянии, например Hj, СО, N0. i.i. i. В кристаллических телах молекулы (атомы или ионы) совершают тепловые колебания около своих положений равновесия. При относитрль-но высоких температурах молекулы (атомы) тела находятся на различных энергетических уровнях. Распределение молекул (атомов) тела по энер-1 гетичееким уровням может осуществляться различным числом спосо- б0В" (ш). , , [c.68]

    Основополагающий вклад в Т. х. внесен такж Г. И. Гессом (основной закон термохимии, 1840), Г. Гельмгольцем (применение второго начала термодинамики к хим. р-циям, 1882), Я. Вант-Гоффом (термодинамика хим. р-ций н растворов, 1883—90), А. Ле Шателье (принцип смещения равновесия, 1883—88), В. Нернстом (третье начало термодинамики, 1906), Г. Льюисом (метод термодинамич. активностей, 1907), И. Пригожиным (неравновесная термодинамика систем с хим. р-циями). [c.567]

    Классическая работа Термодинамика и свободная энергия веществ , написанная в 1923 г. Льюисом и Ренделлом, по существу является первой полной математической формулировкой химической термодинамики. Поколения студентов изучали эту интересную книгу и убеждались в полезности приведенных там соотношений для решения технических проблем. Одной из двух значительных работ, опубликованных после 1923 г,, было экспериментальное подтверждение третьего закона, выполненное Джиоком и его учениками. Другим исследованием явилась разработка методов статистической механики для расчета термодинамических свойств идеального газа на основании первого и второго законов термодинамики. Сейчас нет никаких сомнений в том, что величины свободных энергий, полученные из термических данных и статистических методов расчета, можно с уверенностью использовать для предсказания состояния равновесия в системах. Тем не менее широкое применение термодинамики в органической химии до настоящего времени тормозилось двумя факторами. Использование неточных литературных данных или непонимание ограничений, налагаемых термодинамикой, вело к тому, что некоторые термодинамические выводы не соответствовали экспериментальным результатам. Это в свою очередь вызывало определенное недоверие к тем общим выводам, которые были сделаны на основе термодинамики. Другой причиной, ограничивающей применение термодинамического подхода к проблемам органической химии, являлся недостаток доступных численных значений свободных энергий. Данные но химической термодинамике настолько рассеяны в научной литературе, что без сводных таблиц было крайне трудно работать термохимикам, занимающимся практическими расчетами. Наряду с этим выявилась скудность данных для органических соединений, что было впервые отмечено Парксом и Хаффманом еще в 1932 г. в их оригинальной монографии Свободные энергии органических соединений . В этой очень полезной книге были полностью учтены оба отмеченных выше фактора. [c.13]

    Выражения (17), (18) с точностью до множителя ЕТ справедливы и для метода изотерм, если в качестве определяемых параметров выбрать натуральные логарифмы констант равновесия. Метод изотерм в таком виде лишен недостатков, присущих расчету по второму закону термодинамики, о которых будет сказано ниже. Размерность задачи в методе изотерм и при расчете по третьему закону одна и та же кроме того, он не требует знания термодинамических функций составных частей. Однако особенности постановки тензиметрического эксперимента внушают мало надежд на такое же широкое распространение этого метода, как нри исследовании равновесий в растворах [11—13]. Это связано с тем, что в условиях тензиметрического опыта практически невозможно выполнить опыты с разлггчнымп навесками исходных веществ при одной и той же температуре. Необходимые для расчета значения Р приходится брать па сглаженных кривых, что приводит к систематическим ошибкам. Согласно постановке задачи, число кривых зависимости Р от Т дол кно превышать число определяемых параметров. Давление пара обычно измеряется в пределах 10—760 мм рт. ст. Это налагает существенные ограничения на пределы варьирования контролируемых переменных — навески и нарциальпых давлений исходных веществ..  [c.132]


Смотреть страницы где упоминается термин Второй и третий законы термодинамики. Равновесие: [c.521]    [c.10]    [c.567]    [c.95]    [c.47]    [c.95]    [c.12]   
Смотреть главы в:

Основы химической термодинамики -> Второй и третий законы термодинамики. Равновесие




ПОИСК





Смотрите так же термины и статьи:

Второй и третий законы термодинамики

Закон второй

Закон термодинамики

Закон термодинамики второй

Закон третий

Законы термодинамики третий

Равновесие фаз, закон

Термодинамики второй

Третий



© 2025 chem21.info Реклама на сайте