Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горение жидкого топлива в потоке

    Процесс горения жидкого топлива проходит следующие стадии смешение капель топлива с воздухом, подогрев и испарение, термическое расщепление капель, образование газовой фазы, ее воспламенение и сгорание. Горение можно ускорить, повышая температуру и давление смеси и турбулизируя ее. Мелкое распыление частиц топлива и равномерное их распределение в воздушном потоке приводят к увеличению активной [c.103]


    Печь состоит из двух циклонных камер. В I камере происходит сжигание жидкого топлива — мазута, подаваемого тангенциально в камеру горения. Воздух на горение подается также тангенциально. В загруженном потоке происходит сжигание мазута и получение высокотемпературного теплоносителя, который поступает во II циклонную камеру. Во II камере происходит сжигание токсических газов высокотемпературным теплоносителем. Эти газы тангенциально поступают в камеру сжигания. Отходящие газы дожигаются в камере дожигания и удаляются через боров. [c.261]

    Таким образом, повышение температуры подогрева топлива приводит к суш,ественному уменьшению критерия Л < 1 и сокращению периода испарения. Однако полностью задачу горения потока распыленного жидкого топлива нельзя сводить к задаче испарения одной капли. В ряде опытов топливо предварительно доводилось до парообразного состояния и затем вводилось в реакционный объем. Если бы скорость горения определялась одним только испарением капель, то парообразное топливо при вводе вторичного воздуха должно было бы сгореть мгновенно или по крайней мере на очень коротком участке. На самом же деле этого не происходит, как и при горении газообразного топлива. Время и протяженность горения зависят от ряда других факторов гидродинамики, диффузии, скорости реакций в условиях теплообмена между факелом и окружающими стенками и т. д. Процесс горения даже термически подготовленного топлива протекает в течение определенного времени, хотя и приближается по характеру к процессу выгорания газообразного топлива, т. е. к гомогенному горению. При этом для эффективного сгорания термически подготовленного жидкого топлива, вводимого в реакционное пространство в парообразном состоянии, требуется не только хорошее смешение с окислителем, но и температура окислителя не ниже температуры топлива. [c.67]

    Получение соответствующих характеристик в условиях высокотемпературного двухфазного потока с высоким уровнем скоростей и со сложной аэродинамической структурой связано в преодолением больших методических трудностей. Поэтому до сих пор изучение структуры циклонного процесса ограничивалось исследованиями на холодных моделях, или при горении жидкого топлива [Л. 1, 2]. [c.139]

    ГОРЕНИЕ ЖИДКОГО ТОПЛИВА В ПОТОКЕ [c.36]


    За исключением случаев испарения (и конденсации), а также горения жидкого топлива. Тогда существен перенос тепла с потоком пара (т. е. расход тепла на перегрев пара или выделение тепла при охлаждении пара). [c.76]

    В этих камерах газ подавался по направлению потока через трубку диаметром 5—6 мм, вставленную перпендикулярно к оси трубы. Через камеру поступал воздух для горения. Жидкое топливо распыливалось с помощью воздушной форсунки эжекционного типа. [c.266]

    Таким образом, наиболее эффективными средствами интенсификации процесса горения жидкого топлива в циклонных реакторах следует считать повышение тонины распыливания и улучшение первичного смесеобразования (смешение распыленного топлива с потоком дутьевого воздуха). [c.28]

    Диффузионное пламя, где неразбавленный поток топлива и весь воздух, необходимый для горения, смешиваются между собой путем диффузии через поверхность пламени. В зависимости от скорости подачи топлива и скорости его смешивания с воздухом диффузионное пламя может быть ламинарным или турбулентным. Практическими примерами диффузионного пламени являются пламя горелки Бунзена при закрытых воздушных окнах (рис. 14.2,а), пламя свечи, простой факел сжигаемого нефтезаводского газа и пламя, получаемое при капельном горении жидкого топлива. Длина диффузионного пламени, как следует из этих примеров, может составлять от нескольких сантиметров до многих метров. [c.555]

    Однако при дальнейшем повышении скорости подачи котельного топлива возникают сложные технические проблемы, связанные с капельным горением впрыскиваемого топлива в потоке горячего воздуха, поступающего со скоростью, близкой к скорости звука, и имеющего температуру до 1000 °С. Возможно, что результаты исследований в смежных областях, например в разработке ракетных или газотурбинных двигателей, укажут пути улучшения качества горения жидкого топлива в горячем воздушном дутье. [c.581]

    Горение жидкого топлива протекает во внешнедиффузионной области. Топливо впрыскивается в камеру сгорания, образуя капли диаметром 0,1 мм, летящие со скоростью 1,5 м/с. Известно, что капля топлива диаметром 0,3 мм полностью сгорает в потоке такой же скорости за 2 с. [c.63]

    При микродиффузионном турбулентном горении жидкое топливо посредством форсунок или столкновения струй распыливается на отдельные малые объемы, беспорядочно распределенные в потоке воздуха. Сгорание происходит одновременно с процессом турбулентного микросмешения отдельных малых объемов топлива с окружающим воздухом. [c.165]

    При принудительной подаче части воздуха, необходимого для полного сжигания топлива, факел пламени будет короче, чем в случае диффузионного горения. В еще большей степени геометрия факела зависит от степени закрутки топливовоздушного потока на выходе из горелочного устройства. В зависимости от степени закрутки формируется факел от колоколообразной до плоской формы (настильное пламя). Применение пара для распыливания жидкого топлива практически не влияет на геометрию факела пламени. [c.107]

    Некоторые аспекты конструкций и работы дизельных двигателей. Компрессионное зажигание в дизельном двигателе отличается от искрового зажигания в карбюраторном двигателе тем, что в нем чистый воздух сжимается до образования смеси воздуха и паров топлива, а топливо в жидком виде впрыскивается строго дозированными порциями за несколько градусов угла поворота коленчатого вала до верхней мертвой точки поршня двигателя в цикле сжатия, т. е. раньше, чем оно будет увлечено потоком воздуха на горение. Дизельное топливо воспламеняется при взаимодействии с высоконагретым сжатым воздухом и равномерно сгорает в течение всего цикла расширения при обратном ходе поршня. Для обеспечения мгновенного зажигания впрыскиваемого топлива весьма важно, чтобы оно обладало необходимыми характеристиками воспламенения, обычно выражаемыми цетановым числом. [c.221]

    Например, Д. А. Франк-Каменецкий [18, 19] разработал теорию микродиффузионного горения в турбулентном потоке. При микродиффузионном горении жидкое топливо в паровой фазе раздроблено на отдельные малые объемы, распределенные в потоке воздуха. Для такого вида горения скорость процесса определяется скоростью смешения отдельных малых объемов испарившегося топлива с окружающим воздухом. При этом скорость распространения пламени прямо пропорциональна пульсационной скорости потока, а следовательно, при постоянной интенсивности турбулентности — скорости потока. [c.203]

    Поточная схема горения газообразного и жидкого топлива. Естественной основой всякого установившегося процесса горения с фиксированным очагом горения является поточная схема. Самый очаг горения представляет собой то место в топочной системе, в котором с помощью непрерывного притока тепла поддерживается необходимый для протекания процесса температурный уровень и к которому непрерывными потоками — в смеси или раздельно — подаются топливо и окислитель, превращающиеся в единый поток топочных газов, также непрерывно отводимых от места горения. [c.137]


    Трубчатые печи представляют собой камеры горения, в которых расположено большое количество труб как над огневым пространством, в котором сгорает топливо, так и в потоке горячих дымовых газов. Общая длина труб, размещенных в печи, достигает несколько километров. В трубчатых печах осуществляется косвенный нагрев. Нагреваемая жидкостная или газовая смесь быстро движется по трубам противотоком топочным газам, обогревающим внешнюю поверхность труб. Трубчатые печи обладают высокой мощностью и интенсивностью, устойчивостью в работе, сравнительной простотой устройства. Интенсивная работа этих печей достигается благодаря высокой скорости потока нагреваемого вещества внутри труб (большой коэффициент теплоотдачи) и развитой поверхности нагрева последних при большой разности температур А . Основная часть теплоты передается радиацией от пламени и раскаленной футеровки печей. Трубчатые печи широко применяются для химической переработки топлива и в органическом синтезе. В этих печах для обогрева используется газообразное или жидкое топливо. Существует много способов располол<е-ния труб, топочных устройств и схем движения перерабатываемого сырья. [c.195]

    Воздух в топку подается в двух или в трех ее участках первичный воздух — в сжигательное устройство для распыления жидкого топлива или получения газовоздушной горючей смеси вторичный воздух — в камеру горения для окисления распыленного жидкого топлива или для создания внутреннего воздушного охлаждения пристенного слоя футеровки и частичного снижения температуры дымовых газов третичный воздух (рециркуляционный теплоноситель) — в камеру смешения для снижения температуры потока продуктов горения до заданного уровня и одновременного выравнивания в объеме. В некоторых конструкциях топок с мазутным топливом в форсунку подается весь воздух. В этом случае воздух, поступающий в камеру смешения, принято называть вторичным. [c.73]

    В противовес этим данным, обычно получаемым в виде эмпирических зависимостей для частных случаев испытания отдельного топочного устройства и включающих в скрытом виде воздействие самых различных факторов, имеются пока тоже немногочисленные, но не менее убедительные данные, утверждающие путем прямого сопоставления тот факт, что унос в ряде случаев состоит из самых мелких фракций пыли с содержанием горючего, соответствующим первоначальному составу этих же фракций в исходной пыли угля, поступающей в топку [Л. 34 и 35]. Причина уноса мельчайших частиц, фактически не затронутых горением, указывалась выше. Это явление вполне аналогично так называемому физическому недожогу , наблюдаемому при факельном сжигании жидкого топлива вследствие пролета капель топлива по периферийным, неактивным слоям воздушного потока. [c.164]

    Самым примитивным и простым по оформлению является в этом отношении старинный плошечный способ сжигания, весьма напоминающий по характеру развивающегося процесса сжигания твердого топлива в костре. Схема процесса, возникающего на единичной плошке, показана иа фиг. 52,а. Если на плошку налить слой жидкого топлива, сравнительно легко испаряющегося, то после розжига над плошкой возникнет столб горячего газа, вытесняемого кверху окружающим тяжелым холодным воздухом. Таким образом, само собой в атмосфере устанавливается местное газовоздушное течение, обеспечивающее возникший очаг горения подачей свежего воздуха и отводом продуктов сгорания. Тепло к начальным стадиям процесса доставляется самой зоной горения. Скоростью его доставки к поверхности испарения жидкого топлива в сущности и определяется скорость образования горючей смеси и, как следствие, — скорость сгорания этого топлива и теплопроизводительность очага горения в единицу времени (ккал/час). Развитие такого очага горення носит стихийный, неуправляемый характер. Прогретая с поверхности жидкость испаряется, молекулы топлива, будучи увлечены общим газовоздушным потоком, движутся кверху внутри огневой зоны, проходя последовательные стадии теплового разложения и вступая в смесеобразование с окружающим воздухом. За тонкой огневой зоной молекулы образовавшихся П родуктов сгорания продолжают движение кверху расширяющимся общим потоком. Толща этой горячей, но уже сгоревшей части потока увеличивается снизу вверх (фиг. 52), все более замедляя (увеличением пути) продвижение молекул воздушного кислорода к центру потока, что позволяет центральным молекулам (или осколкам молекул) образовавшегося под воздействием высокой [c.143]

    Непосредственное наблюдение за процессом воспламенения капли топлива, вносимой в поток, позволило установить, что при малых скоростях движения воздуха воспламенение капли происходит вблизи ее поверхности, причем пламя сразу же охватывает всю поверхность капли. С увеличением скорости обдува пары топлива, отходящие от поверхности капли, воспламеняются на некотором удалении от капли в ее следе. Это расстояние увеличивается по мере роста скорости обдува, и при некоторых значениях относительной скорости капли воспламенения паров не происходило. Величина этой скорости определяется температурой потока. Чем выше температура потока воздуха, тем при более высоком значении скорости происходит срыв пламени. Аналогичное явление описано в работе [9], где приведены некоторые данные о воспламенении и горении капель жидкого топлива (керосин, изооктан, этиловый спирт). [c.30]

    Для дизельного топлива изменение температурных условий (температуры потока) в исследованной области практически не сказывается ни на суммарной длительности процесса горения, ни на длительности собственно горения. Это обстоятельство позволяет сделать вывод, что общая длительность процесса горения тяжелых остаточных топлив по сравнению с легкими, полностью испаряющимися, будет определяться длительностью процессов подготовки топлива и выгорания коксового остатка. Изменение условий обтекания капли, выражающееся в изменении температуры и скорости, не изменяло общей последовательности и характера развития процесса горения (рис. 23). Скорость обдувания варьировалась в интервале 3,3—6,5 м/сек. В этом случае сравнение соответствующих значений времени полного сгорания одиночной капли мазута (т ) при различных условиях обдува показывает, что величина Т2 остается примерно постоянной. Одновременно с этим время горения жидкой фазы возрастает с увеличением относительной скорости. Причина этого явления в том, что с увеличением скорости обдувания пламя смещается относительно капли и основной очаг горения располагается в следе за каплей. [c.49]

    Электрическая проводимость высокоскоростного потока выгорающего жидкого топлива в зоне горения выше, чем в продуктах сгорания. [c.32]

    ЗАКОНОМЕРНОСТИ ГОРЕНИЯ ГАЗОВОГО ЖИДКОГО ТОПЛИВА В ПОТОКЕ [c.9]

    В то же время исследования ЭНИН показали, что факел распыленного топлива в турбулентном потоке не является однородным происходит горение как отдельных капель, так и их совокупностей. Однако, основываясь на ранее изложенных данных о горении индивидуальных капель, можно полагать, что горение тяжелого жидкого топлива будет развиваться в условиях более выраженного дискретного строения факела, при котором должна сохраниться вся последовательность элементарных стадий, хотя на длительность каждой из них будет оказываться влияние других капель, движущихся в непосредственной близости. [c.43]

    Приведенные данные позволяют понять физические особенности горения жидкого топлива и проводить расчеты горения и испарения капель жидкого топлива. Все это необходимо для рационального проектирования топочных устройств, для их наладки и выбора оптимальных режимов работы. Подробные расчеты выгорания факела капель жидкого топлива в камерах сгорания и топках, аналогичные расчету пылеугольного факела, провести достаточно трудно из-за сложной неодномерной аэродинамики процесса. Большей частью сжигание распыленного жидкого топлива проводится в закрученном потоке воздуха. Примером может служить регистровая камера сгорания, схематически представленная на рис, 11-5, Форсунка помещается в голове конусной части жаровой трубы в центре закручивающего воздух лопаточного регистра , Закрученный в регистре первичный воздух (составляющий до 30—40% необходимого для сгорания воздуха) помогает разбросу капель по периферии и, главное, создает обратный ток горячих газов из пламени к форсунке. После первоначального воспламенения (искрой, дежурным факелом и т. п,) в дальнейшем воспламенение поддерживается за счет горячего обратного тока. Необходимый для горения воздух поступает кроме регистра через отверстия на конусной и цилиндрической частях [c.253]

    Можно предложить горелку, которая не будет бояться даже ураганного ветра, работая в открытом виде. Для этого достаточно, например, сконструировать ее в виде цилиндрического колпака, обращенного прямо навстречу потоку воздуха, в дно которого вмонтирована распыливающая форсунка (фиг. 57). В цилиндрической стенке колпака, сделанного из огнеупорного материала, следует создать значительное число небольших отверстий с суммарным сечением м" ) не более сечения входного отверстия самого колпака. Когда такая горелка будет разожжена и придет в установившееся тепловое состояние, будет достигнута и устойчивость очага горения практически при любых скоростях набегающего холодного воздушного потока, обеспечивающая практически полное горение жидкого топлива с внешне беспламенным горением. Внутренная полость колпака, обращенная навстречу потока воздуха, явится зоной торможения этого потока и вместе с тем зоной энергичного испарения и смесеобразования под воздействием раскаленных стенок и кислорода первичного воздуха, ускоряющего газпфикационный процесс . Создающийся в полости колпака напор газа выдавли- [c.153]

    Максимальный размер факела формируется прямоструйными горелками без предварительного смешения топлива с воздухом. В этом случае длина и диаметр факела определяются качеством топлива, конструкцией насадка и скоростью выхода топливз1. При принудительной подаче части воздуха, необходимого для полного сжигания топлива, факел пламени будет короче, чем в случае диффузионного горения. В еще большей степени геометрия факела зависит от степени закрутки топливовоздушного потока на выходе из горелочного устройства. В зависимости от степени закрутки формируется факел от колоколообразной до плоской формы (настильное пламя). Применение пара для распыливания жидкого топлива практически не влияет на геометрию факела пламени. [c.107]

    При горении взрывчатых веществ и порохов возможны различные сочетания процессов в конденсированной и газовой фазах. Простейшим в теоретическом отношении является случай, указанный Беляевым [22] и разработанный далее Зельдовичем [23], когда горение происходит в газовой фазе, а поток тепла, приходящий из зоны пламени, вызывает в конденсированной фазе эндотермические процессы испарения. Это пример квазигетерогенного горения, отличающийся от горения жидкого топлива только отсутствием диффузионных процессов. Важная особенность этого процесса, отмеченная Зельдовичем [23], заключается в тепловой инерции конденсированной фазы, обусловленной ее высокой теплоемкостью. При изменении давления режим горения в газовой фазе быстро меняется, а толщина зоны прогрева конденсированной фазы не успевает подстраиваться к этим изменениям. В этом может заключаться механизм пульсаций, наблюдающихся при горении конденсированных фаз в замкнутом объеме. [c.272]

    Процесс горения жидкого топлива проходит следующие стадии смешение капель топлива с воздухом, подогрев и испарение, термическое расщепление капель, образование газовой фазы, ее воспламенение и сгорание. Горение можно ускорить, повышая температуру, давление и создавая турбулизацию смеси. Мелкое распыление частиц топлива и равномерное их распределение в воздушном потоке увеличивают активную поверхность реакции, облегчают нагрев и испарение частиц и способствуют процессу быстрого и полного горения. Наиболее благоприятно протекает процесс смешения и разложения топлива в случае подвода всего воздуха для горения к основанию факела. Сгорание топлива должно заканчиваться в топочной камере без залетания факела в конвекционную секцию. Дымление при сгорании должно быть минимальным. Чрезмерно ослепительное пламя свидетельствует о повышении избытка воздуха. Искрение пламени указывает на содержание в жидком топливе твердых частиц, темно-красные продольные полосы — на плохое распыливание, а общее потемнение и краснота пламени — на недостаток воздуха. [c.43]

    Абляционные материалы успешно использовали в неохлаждае-мых камерах горения реактивных двигателей для корректировки полета на низкой высоте. В этих реактивных двигателях, работающих на жидком топливе, поток жидкого топлива недостаточен для обеспечения регенеративного охлаждения. Таким образом, здесь требуются какие-то другие виды охлаждения. Некоторые абляционные армированные пластмассы имеют значительную долговечность при огневых экспозициях порядка 22 мин. Кроме того, они успешно выдерживают несколько тысяч повторных запусков двигателя. Внешний вид 800-граммового реактивного двигателя в разобранном состоянии показан на рис. 17. Передняя часть камеры сгорания изготовлена из [c.452]

    Ценность гипотезы о времени запаздывания заключается в ее общности. Например, результаты экспериментов по воспламенению реагентов, инжектируемых в поток горячего газа, удобно описывать, используя понятие о времени задержки воспламенения (связанном с полной скоростью химической реакции), которое в основном эквивалентно понятию о времени запаздывания (см. 1 главы 4), Плодотворные исследования вибрационного горения в ракетных двигателях, работающих на жидком топливе, были основаны на использовании гипотезы о времени запаздывания, введенной в работах [4з,45-бо] шедшей применение главным образом в работах Крокко [51-66]. Вопрос о неустойчивости горения в ракетных двигателях, работающих на жидком топливе, здесь будет освещен очень кратко обзор можно найти в работах [88,57-88]. [c.305]

    Высокочастотные колебания (с частотой ббльшей, чем приблизительно 10 циклов в секунду) возникают под действием того же механизма (распространение акустических волн), который уже обсуждался применительно к ракетным двигателям твердого топлива, с той разницей, что время запаздывания здесь связано с запаздыванием процесса превращения капель жидкого топлива в газообразные продукты, который в данном случае происходит во всей камере, а не только на поверхности. Чтобы учесть пространственную протяженность зоны превращения, Крокко и Ченг в работах [8 .88] ввели понятие о пространственном запаздывании (связанном со временем запаздывания через среднюю скорость потока топлива). При исследовании высокочастотной неустойчивости горения в жидкостных ракетных двигателях не рассматривались столь сложные модели, как в случае описанного выше вибрационного горения твердого топлива. Главной причиной [c.305]

    Разделение процессов горения и плавления возможно и при устройстве тангенциально приставляемых к циклону выносных горелок (рис. 3, 2), однако необходимо иметь в виду, что сжигание жидкого топлива в прямоточных камерах требует значительных объемов [Л. 7]. Кроме того, такие форкамеры не приспособлены для сжигания тяжелых жидких топлив. В качестве форка-мер для жидкого топлива находят применение струйные форсированные камеры, работающие с тепловым напря-, жением до 30-10 ккал1м -ч и выдающие прямолинейный поток газов. Известно, что такие камеры используются в Финляндии [Л. 18]. [c.174]

    С целью определения оптимального положения места ввода вторичного воздуха по длине камеры горения были про1ведены холодные аэродинамичеокие продувки циклонной камеры горения, что вызвано существенным отличием процесса горения многокомпонентных систем и в особенности крупнодисперсных водоугольных суспензий от сжигания в таких камерах твердого и жидкого топлива [4, 5] и, в частности, чувствительностью этого процесса к нарушению структуры потока в камере. Так, если при сжигании сухой угольной мелочи в циклонной топке прилипание частиц к стенкам (к жидкой шлаковой пленке) увеличивает скорость их выгорания, то налипание на стенку капель суспензии, не прошедших еще стадию подготовки перед воспламенением (температура поверхности капли суспензии в период подготовки не поднимается выше температуры кипения воды), резко ухудшает горение и приводит к застыванию пленки шлака на стенке. Для улучшения выгорания потока капель водоугольной суспензии или любой другой топливной системы, включающей воду, в циклонной ка Мере необходимо в первую очередь организовать аэродинамику процесса таким образом, чтобы основная масса капель суспензии не попадала на стенку в начальный период горения суспензии. [c.72]

    На рис. 89 показаны циклоны для жидкого топлива двух типов [176]. В первом циклоне типа Vortex средний круговой поток газа из первой зоны горения движется относительно наружного и внутреннего топливных потоков. Газ и топливо нахо- [c.192]

    Принципиально возможны и другие приемы как первичной, так и вторичной турбулизации газо-воздушного потока. К числу распространенных приемов первичной турбулизации втекающего в топку воздуха принадлежит применение закручивающих аппаратов в виде косых лопаток, размещенных в кольцевом воздушном сечении, окружающем форсунку для жидкого топлива или сопло для газа (фиг. 18-7) [Л. 17, 54 и др.]. Ро.яь таких закруток не ограничивается только пер Вичной турбулизацией топочного потока и заслуживает специальн10Г0 рассмотрения. Несколько реже применяются вторичные турбулизаторы, так как размещение их в потоке высоких температур встречает некоторые технические трудности. На фиг. 18-8 показан такого рода турбулизатор, носящий не совсем соответствующее ему название стабилизатора горения , применявшийся в топках некоторых турбокомпрессорных реактивных двигателей и представляющий собой корзинообразное тело. Последнее состоит из полых стержней (ребер) и глухого днища, охлаждаемых вторичным воздухом, с боковыми [c.192]

    При повышенном давлении (Р = 20—50 ama) жидкое углеводородное топливо перед подачей в реакционный объем можно нагревать до температуры 670—700° К без опасения его разложения с образованием кокса. Применение высокоподогретого жидкого топлива, как показывает опыт, положительно сказывается и на характере выгорания топлива, и на теплообмене горящего потока в цилиндрической экранированной камере (рис. 5), причем с повышё-нием температуры подогрева жидкого топлива несколько сокращается длина зоны горения, т. е. повышается интенсивность процесса выгорания и увеличивается полнота сгорания. Кроме того, повышается общий температурный уровень в камере горения, тепловые нагрузки перераспределяются на радиационные поверхности нагрева и возрастает плотность теплового потока на экраны, расположенные в головной части камеры горения (рис. 6). [c.70]

    Количественное описание сложных процессов, протекающих в топочной камере с учетом их взаимного наложения, в настоящее время дать невозможно, так как решение этой задачи имеющимися математическими средствами наталкивается на непреодолимые трудности. Однако при постоянных начальных условиях (скорость, температура, давление и состав потока, а также размеры капель) в стационарном факеле можно выделить такие области, параметры которых не зависят от времени и изменяются лишь от сечения к сечению. Для упрощения можно принять стадии смесеобразования и собственно горения независимыми друг от друга. Указанные допущения имеют основание в связи с тем, что при сжигании жидкого топлива так же, как при сжигании газа, в горящем стационарном факеле можно выделить три участка зону предпламенных процессов (холодное ядро), зону горения и зону догорания. Границей между первым и вторым участком условно считают фронт пламени, т. е. зону резкого изменения параметров топливновоздушной смеси. Между вторым и третьим участком нет четко выраженной разницы. Ее обычно устанавливают по косвенным признакам, принимая за начало участка догорания границу плавного понижения температуры или уменьшения скорости химических реакций. [c.42]

    Влияние химического состава жидкого топлива на теплоотдачу факела изучалось В. М. Бабошиным (ВНИИМТ) на огневом стенде, представляющем собой водоохлаждаемую футерованную камеру горения внутренним диаметром 820 мм и длиной около 6 м. Мазут различных сортов сжигался в прямоструйной форсунке высокого давления конструкции ДМИ. Для сравнения в той же форсунке сжигался дистиллят, отличающийся от мазутов по содержанию асфальтенов, мета-по-нафтеновых и ароматических соединений. Отношение углерода к водороду (С/Н) варьировалось в пределах от 7 до 8 (в пересчете на рабочую массу топлива). Содержание влаги в мазутах различных партий колебалось от 0,64 до 15,5%. Интенсивность теплоотдачи факела определялась по собственному излучению факела, суммарному излучению факела и кладки и падающему тепловому потоку. Собственное излучение факела и суммарное излучение факела и кладки определялись радиационным пирометром Тера-50 с узкоугольной оптикой П 20) прн визировании телескопа через поток продуктов сгорания соответственно на водохлаждаемое устройство ( черное тело ) и раскаленную поверхность шамотных пробок. Падающий тепловой поток из-л- ерялся при помощи торцевого термозонда конструкции ВНИИМТ. Измерения производились в 12 сечениях камеры горения. Среднеинтегральные величины определялись на основании кривых изменения указанных характеристик по длине камеры горения. Кроме того, определялась суммарная концентрация сажистых и коксовых частиц по оси [c.67]

    Решающее влияние на излучательные характеристики факела оказывают режимные параметры процесса горения (расход мазута, вид и количество распылнвающего агента, коэффициент избытка воздуха, температура воздуха, интенсивность крутки воздушного потока и содержание влаги в сжигаемом жидком топливе). [c.67]

    Приведенные выше расчеты и экспериментальные данные относятся к испарению неподвижной относительно воздуха капли С некоторым приближением они применимы и к свободно оседающим в воздухе мелким капелькам и частицам Крупные же капли падают довольно быстро, и скорость их испарения при этом заметно повышается Определение скорости испарения капель, движущихся относительно газообразной среды, представляет интерес для таких процессов, как распылительная сушка, охлаждение рас пыленной водой и горение распыленного жидкого топлива, а так же для метеорологии (испарение дождевых капель) Многие исследователиизучали скорость испарения капель, обдувае мых воздухом с различной скоростью На основе теоретических соображений, подтвержденных измерением скорости уменьшения диаметра капель, обдуваемых воздушным потоком, скорость испл рения в этих условиях можно представить формулой  [c.105]


Библиография для Горение жидкого топлива в потоке: [c.116]   
Смотреть страницы где упоминается термин Горение жидкого топлива в потоке: [c.63]    [c.151]    [c.136]   
Смотреть главы в:

Повышение эффективности использования газа и мазута в энергетических установках -> Горение жидкого топлива в потоке




ПОИСК





Смотрите так же термины и статьи:

Жидкое топливо

Закономерности горения газового и жидкого топлива в потоке

Приложение комплексного анализа к процессу горения распыленного жидкого топлива и в некоторых других случаях горения потока пылевидного твердого топлива



© 2025 chem21.info Реклама на сайте