Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен равновесие

    В некоторых случаях растворимость ионов Q+ в воде настолько низка, что они практически полностью остаются в органической фазе [348]. В таких случаях ионный обмен (равновесие 3) происходит на границе раздела фаз. [c.93]

    Закон Здановского лежит в основе разрабатываемой в последние годы термодинамической теории концентрированных )астворов электролитов [80]. С применением соотношения (3.1) О. Г. Фролов и др. [81] показали возможность расчета констант ионно-обменного равновесия в четверных водно-солевых взаимных системах, состоящих из галогенидов и нитратов щелочных металлов, в том числе натрия. [c.41]


    Первой стадией этого процесса является ионный обмен, второй — образование осадка. В результате ионного обмена концентрация ионов серебра в растворе возрастает и при достижении произведения растворимости выпадает осадок хлорида серебра. Третьей стадией является закрепление образовавшегося осадка на зернах носителя—ионита. Как показал А. А. Лурье, на ионообменниках с высокой обменной емкостью первые две стадии процесса четко разграничены во времени и пространстве. Сначала происходит вытеснение из ионита иона-осадителя и его диффузия в раствор, затем химическое взаимодействие иона-осадителя с ионом электролита в растворе и выпадение осадка вне матрицы, на поверхности зерна. Последнее объясняется не стерическими факторами, а действием мембранного (доннановского) потенциала (см. гл. П1). Мембранное равновесие приводит в этом случае к почти полному вытеснению электролита из фазы ионита, т. е. матрицы. [c.165]

    Основное содержание учебника составляют разделы, которые, судя по монографиям и периодической литературе, наиболее необходимы биологам. Прежде всего это основы термодинамики и химическое равновесие, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. В дополнение к традиционному изложению этих разделов приведено описание некоторых специфических приложений физической химии, важных для биологии. Так, кратко рассмотрены свойства полиэлектролитов, ионный обмен, мембранное равновесие и мембранные потенциалы, ионоселективные электроды, основы хроматографии и экстракции. [c.3]

    Процесс ионного обмена представляется так. Вначале ион, содержащийся в растворе (вытесняющий ион), попадает на поверхность ионита, а затем диффундирует в его объем к той точке, где происходит акт обмена. Вытесняемый ион диффундирует из объема ионита к поверхности и далее переходит в объем раствора. Объем ионита в процессе ионного обмена может измениться. Поэтому в теориях, рассматривающих равновесие при ионном обмене, учитываются эти изменения. [c.221]

    Потенциал стеклянного электрода в отличие, например, от водородного и хингидронного электродов включает скачки 1 — на границе раздела стекло—исследуемый раствор 2 — на границе раздела стекло—буферный (стандартный) раствор 3 — на границе раздела буферный раствор — металл внутреннего электрода. Катионы щелочных металлов, входящие в состав стекла, хотя и в незначительной мере, но участвуют в обмене с ионами водорода раствора (константа обменного равновесия равна 10 —10 ). Однако этого вполне достаточно, чтобы между стеклом и раствором возник скачок потенциала [c.298]


    Размер зерен ионита оказывает влияние на скорость протекания раствора через ионит и на скорость ионного обмена (разд. 7.3.1.2), что показано на рис. 7.15 для катионита в Н -форме. Ионный обмен с основаниями может происходить в различные промежутки времени. Наличие частиц небольших размеров способствует ускорению установления равновесия обмена между ионитом и анализируемым раствором, но при этом снижается скорость протекания раствора через ионит вследствие большого сопротивления ионита. [c.374]

    Применяя иониты, селективные по отношению к определенным ионам, можно оказывать влияние на состояние равновесия ионного обмена. Чем больше сродство ионита к иону по сравнению со сродством к иону Н+, тем полнее проходит ионный обмен в верхнем слое ионита и тем меньше переходный слой. [c.379]

    А. Н. Фрумкин впервые совершенно конкретно сформулировал роль ионного обмена в образовании электродного потенциала. Ионный обмен участвует в создании электродного потенциала наряду с контактной разностью потенциалов, причем процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.219]

    При уменьшении pH равновесия ионных обменов [c.157]

    Сорбция воды и набухание. Набухание ионитов играет важную роль в ионном обмене от него зависят такие факторы, как доступность ионогенных групп и скорость установления ионообменного равновесия. Изменение объема ионита — сжатие или расширение, связанные с сорбцией воды, необходимо учитывать при практическом применении ионитов при заполнении колонок, при переводе ионита из одной ионной формы в другую. [c.693]

    Подвижные обменивающиеся ионы проникают через поверхность ионита в обоих направлениях, а высокомолекулярные ионы с противоположным зарядом, из которых состоит основная масса ионита, неподвижны. Поэтому поверхность зерна ионита можно рассматривать как мембрану, проницаемую для одних ионов и непроницаемую для других. На этой условной мембране устанавливается равновесие, которое называют мембранным или доннановским, по фамилии Ф. Доннана, опубликовавшего в 1911 году теорию равновесия для полупроницаемых мембран. Возможно теоретическое описание закономерностей ионного обмена как процесса, идущего через полупроницаемую мембрану [52, 180, 181]. Получаемые при этом результаты оказываются тождественными описанным выше на основе представлений об ионном обмене как о гетерогенной химической реакции. [c.307]

    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]

    Ионообменное равновесие. Ионный обмен представляет собой обратимый процесс, и состояние равновесия ионного обмена устанавливается в соответствии с законом действия масс. На основе этого Б. П. Никольским [3] предложено уравнение ионообменного равновесия  [c.216]

    Равновесие при ионном обмене. Сорбционную способность ионитов оценивают полной обменной емкостью, рабочей и равновесной обменной емкостью. Полная обменная емкость равняется общему числу ионогенных групп на единицу массы или объема ионита (экв/г или экв/см ) и представляет собой предельную сорбционную способность ионитов. Рабочая емкость не является чисто статической (равновесной) характеристикой ионита, так как представляет собой среднюю рабочую концентрацию сорбированного иона, отнесенную ко всему объему ионита в неподвижном слое при проведении неравновесного сорбционного процесса. Рабочая концентрация зависит как от статических факторов, так и от скорости массопередачи. [c.211]


    Многочисленные явления, относящиеся к сорбции ионов гидроокисями, могут быть истолкованы на основе ионообменного равновесия, хотя из результатов ранних работ не всегда ясно, протекает ли процесс сорбции во всем объеме твердой фазы или только на поверхности. Этот вопрос мо. но легко разрешить, определив полную емкость данной массы ионообменника в зависимости от его поверхности однако до настоящего времени подобные определения проводились очень редко. Свежеосажденные окиси трехвалентных металлов — очень эффективные сорбенты например, гидратированная окись железа хорошо сорбирует катионы щелочноземельных элементов (в соответствии с законом действия масс) [3] другие двухвалентные катионы [4] сорбируются при pH выше 7. Можно предположить, что катионы щелочных металлов и щелочноземельных элементов сорбируются на поверхности и легко элюируются, а катионы с более высоким зарядом (Се +, Рт +, Ки +) сорбируются во всем объеме ионообменника и вымываются с трудом [5]. Пока еще неизвестно, в какой мере это явление связано с ионным обменом, так как подобные ионы могут также соосаждаться на окислах. Амфотерные окислы, такие, как гидроокись алюминия, в зависимости от pH раствора могут сорбировать либо катионы, либо анионы, что может быть выражено следующим уравнением [6]  [c.114]

    Об ионном обмене сказано далее. Распределение вещества между двумя жидкими фазами следует из условия равенства его химических потенциалов в равновесии [c.70]

    В тех случаях, когда разделению подлежат ионы, сродстЁо которых к смоле различается значительно, элюирование производится раствором кислоты. Установлено, что минимальный расход элюента достигается при некоторой оптимальной концентрации кислоты. При высоких скоростях протекания оптимум выражен более четко. С повышением концентрации кислоты скорость элюирования возрастает вследствие смещения ионо- обменного равновесия. С другой стороны, высокая концентрация кислоты вызывает усадку ионита, что ведет к уменьшению коэффициентов диффузии ионов в матрице ионита и снижает скорость элюирования. Так же действует и увеличение вязкости раствора с ростом концентрации кислоты. [c.160]

    Принцип метода определения величины поверхности кристаллического порошка заключается в следующем. Порошок сернокислого свинца взбалтывают с раствором, содержащим радиоактивный свинец. В результате обмена ионов устанавливается обменное равновесие, причем коэффициент разделения можно с достаточной степенью точности принять равным единице. Следя за изменением активности раствора во времени и постоянно переме-шивгя смесь, можно выяснить кинетику реакции обмена. Обычно реакции изотопного обмена подчиняются уравнению первого порядка. Степень обмена X через время t после начала реакции обмена может быть легко найдена из очевидного соотношения [c.381]

    Ионный обмен является обратимым процессом. Катионит как поливалентный электролит с валентностью х запишем схематично как R . Тогда после внесения Н+-формы катионита в растаор электролита, например, Na l, установится равновесие  [c.325]

    Равновесие в системе твердая фаза — дисперсионная среда определяет такие процессы, как ионный обмен, адсорбционные и злектрокинетические явления. Из рис. 4.12 видно, что состав поровых растворов влияет на перераспределение ионов при термовлагообмене в торфяных системах. [c.79]

    В концентрированной серной кислоте изомеризация 3-метилпентана протекает медленно. Если реакцию проводить в тритированной кислоте, сразу же после образования какого-либо иона достигается равновесие между 2- и 3-метилнентильными ионами. Предполагается, что каждый ион подвергается быстро.му обратимому обмену всех протонов, смежных с катионным центром, так что мож- [c.22]

    Совместное влияние концентрации одноименных ионов и ионной силы раствора на растворимость иллюстрирует рис. 3.1, на котором представлено влияние концентрации N32804 на растворимость РЬ504. Кривая б отражает уменьшение растворимости в соответствии с уравнением (3.3.1) без учета ионной силы. Кривая а построена с учетом ионной силы. Из рисунка следует, что первоначальное уменьшение растворимости во втором случае (а) меньше, чем в первом б). При высоких концентрациях N32804 растворимость вновь возрастает. Далее, если по крайней мере один ион малорастворимого соединения А Вп участвует в каком-либо другом равновесии, то это оказывает влияние на растворимость. Оно становится заметным тогда, когда константа этого равновесия К. приближается к произведению растворимости Кь- Особое внимание следует обращать а это в том случае, когда /С<С При этом Ь 1//С, и поэтому растворимость пропорциональна концентрации второго партнера конкурирующего равновесия. Такими конкурирующими реакциями могут быть комплексообразование, процессы окисления — восстановления, кислотно-основного взаимодействия, обменные процессы при осаждения или ионный обмен. В практике чаще всего встречаются реакции [c.58]

    Реакция протекает вправо при избытке кислоты. Ионит в колонке отмывают водой от избытка кислоты, после чего ионит готов к применению. Пробу пропускают через колонку, колонку промывают водой или элюентом. Собирают элюат целиком или по фракциям. Перед каждым последующим применением необходимо проводить регенерацию ионита в колонке, так как в колонке содержатся различные ионы (например, Х , Хг). Происходящий при этом химический процесс аналогичен описанному уравнением (7.4.5). Процесс замены ионов Х+ ионами Хь Ха. .. называют регенерацией ионита, чтобы подчеркнуть, что ионит при этом возвращается в свое исходное состояние. Для сдвига равновесия вправо необходимо подобрать нужную концентрацию кислоты. Концентрированные растворы повышают скорость ионного обмена, но из-за высокой вязкости раствора снижается диффузия ионов. Поскольку процесс ионного обмена протекает сте-хиометрически, можно рассчитать полную обменную емкость колонки, зная количество ионита. Но рассчитанную обменную емкость не всегда можно полностью использовать (разд. 7.3.1.1). Пусть в колонке имеется ионит в Н -форме. Требуется провести ионный обмен с ионами К" . В месте подачи анализируемой пробы в колонку происходит полный обмен ионов Н+ на ионы При дальнейшем пропускании раствора, содержащего ионы К (фронтальная техника проведения ионного обмена), происходит смещение зоны, заполненной ионами К" , вниз. При этом колонку можно разделить на три слоя (рис. 7.17). В первом слое находится ионит только в К" -форме, во втором слое — ионит, содержащий оба иона, в третьем слое — ионит, содержащий ионы Н" . Распределение концентраций происходит по 8-образной кривой (ср. с формой полос элюентной хроматографии). При дальнейшем пропускании раствора КС происходит зарядка второго слоя ионами до проскока. Число ионов К" , которые могут быть количественно поглощены колонкой до проскока ионов, называют емкостью колонки до проскока. Эта емкость меньше величины полной емкости колонки, так как проскок К" -ионов наблюдается в тот момент, когда в колонке еще содержатся Н+-ионы. [c.378]

Рис. 38. Графическое изофажение равновесия между одноименно заряженными, но различными по величине заряда ионами обмен Ыа" (в смоле) на (в растворе) [80] Рис. 38. Графическое изофажение <a href="/info/3428">равновесия между</a> одноименно заряженными, но различными по <a href="/info/616443">величине заряда ионами</a> обмен Ыа" (в смоле) на (в растворе) [80]
    Скорость ионного обмена на обычно используемых ионитах велика — равновесие устанавливается за доли минуты, иногда за несколько минут. Ионный обмен — процесс хемосорбционный, состоящий из внешней диффузии сорбируемого иона к поверхности зерна сорбента, затем внутренней его диффузии в зерне к зоне химической реакции и обратной диффузии вытесненного десорбируемого иона внутри зерна и в растворе. Обменные химические реакции внутри ионитов обычно идут со скоростями, значительно большими, чем диффузия ионов, которая при этом и лимитирует процессы ионного обмена. Эти процессы подчиняются закономерностям диффузионной кинетики, причем взаимодействия между растворами электролитов с малой концентрацией поглощаемых ионов и ионитами большой обменной емкости при малой степени сшивки лимитируются чаще всего внешней диффузией, а в концентрированных растворах и при больших степенях сшивки — внутренней диффузией. Скорость диффузии и обмена возрастает с уменьшением размера зерен ионита. [c.307]

    Ионы Си имеют очень большое сродство к НдУи образуют соединение Си[СиУ]-5Н20, плохо растворимое. Во избежание его выделения в осадок, для создания устойчивой работы колонки иногда применяют смолу в разделяющей зоне в смешанной медно-водородной форме (на одну часть смолы в Н -форме две части смолы в Си -форме). Это переводит указанное соединение в хорошо растворимое Н2[СиУ] [97]. Обменное равновесие в разделяющей зоне можно представить так [941  [c.122]

    Из реакций тяжелой воды простейшей является ионный обмен по схеме НаО 4-D ) 2HD0. Равновесие этой реакции смещено вправо (/( = 3,3). [c.504]

    Как вытекает из названия метода, катализаторы межфазного переноса используются при проведении реакций в системе, состоящей из двух несмешивающихся фаз жидкость — жидкость илн твердая фаза — жидкость. Одна из фаз (жидкая, обычно водная, или твердая) включает основание и (или) нуклеофил. Вторая фаза, как правило, является раствором субстрата в каком-либо органическом растворителе (иногда роль растворителя играет сам субстрат). Поскольку фаза, содержащая основание и (или) нуклеофил, нерастворима в фазе с субстратом, в отсутствие катализатора межфазного переноса реакция не идет. Добавка межфазного катализатора, содержащего лнпо-фильный катион, растворяющийся в обеих фазах, вызывает обмен анионов катализатора с анионом в водной (или твердой) фазе. Если обозначить катион катализатора межфазного переноса анион Х , а катиоп нуклеофила в водной фазе М+ и соответствующий анион Ни , то ионный обмен между фазами можно представить как равновесие [c.7]

    ИЗОТОПНОГО РАЗБАВЛЕНИЯ МЕТОД, метод количеств. хим. анализа с использ. радиоактивных или обогащенных стаб. изотопов. Особенность метода — возможность проводить количеств, определения при неполном выделении в-ва. В классич. варианте метода с использ. радиоакт. индикаторов определение компонента основано на изменении уд. активности вследствие разбавления в ходе анализа, К анализируемому р-ру добавляют известное кол-во W определяемого в-ва, содержащего радиоактивный изотоп с активностью А и уд. активностью Si = Ajw. После достижения равновесия изотопного обмена между радиоактивными и стаб. атомами из р-ра выделяют тем или иным способом (экстракцией, ионным обменом, осаждением и т. д.) часть определяемого в-ва, измеряют ее массу (спектрофото-метрич., гравиметрнч., титриметрич. или др. методом), радиоактивность и устанавливают уд. активность 5г = = Al w -t- л), где X — исходное кол-во определяемого в-ва. Из ур-ний для Si и 5г можно найти л = г0[(3)/3г) — 1]. Предел обнаружения ограничен чувствительностью измерения массы выделенной доли в-ва и составляет 10" — 10" % по массе. [c.213]

    Протон (от греч. protos — первый) — устойчивая элементарная"] (фундаментальная) частица с единичным положительным электрическим зарядом П. в 1863 раза тяжелее электрона протоны образуют вместе с нейтронами ядра всех химических элементов. Число П. в атомном ядре определяет заряд ядра (2) и место соответствующего элемента в периодич. системе Д. И. Менделеева. Наиболее легкое ядро — ядро изотопа водорода (протия), представляет собой один протон. Поскольку атом водорода имеет только один электрон, его ионизация приводит к образованию положительного иона Н+, который в растворах гидратирован (НзО+). Этот ион играет важную роль в кислотно-основных равновесиях (кислота протон + + основание), в ионном обмене, в электролитической диссоциации и др. Протонизация — присоединение протона Н+. [c.109]

    Весьма трудно различить комплексы с большим числом нитратных групп, т. е. определить долю каждого вида ионов Ри(ЫОз)б, Ри(ЫОз)б , НРи(ЫОз) , НаРи(ЫОз)б. В связи с этим интересны исследования по ионному обмену Ри(1У) на анионитах [623, 626]. Равновесия в водной фазе для последних ступеней комплексообразования выражаются уравнениями  [c.43]

    Кнох и Зиндер [497] сообщили о селективной экстракции четырехвалентного плутония триизооктиламином в ксилоле и три-лауриламином в керосине из азотнокислых растворов. Извлечение Pu(IV) проводят из 6,5 М HNO3, в которой плутоний находится частично в виде аниона [Pu(N03)6] ". В результате экстракции равновесие комплексообразования смещается и происходит полное извлечение плутония (подобно ионному обмену). Метод позволяет довольно селективно отделить плутоний от урана и продуктов деления (табл. 49). Очистка плутония [c.345]

    Марш, Клейн и Вермейлен [32] представили исчерпывающий обзор литературы по кинетике и равновесиям полимеризации и провели детальное исследование с целью установления механизма полимеризации в областях концентраций 0,02— 0,18 % кремнезема и pH 4—10 при 25°С. Исходный раствор мономера был приготовлен ионным обменом из МаоН25104 хНгО при рН 2,5. При различных концентрациях кремнезема и pH готовили буферные смеси с ацетатом и затем измеряли скорости процесса полимеризации и уменьшения количества кремнезема, способного вступать в реакцию с молибдатом. Таким реакционноспособным кремнеземом являлся главным образом 31 (ОН) 4, называемый для удобства мономером . Следует отметить значительное сходство в результатах, полученных указанными авторами, и данных, показанных на рис. 3.48—3.52, поскольку в обеих сериях измерений подтверждается процесс зародышеобразования и роста частиц. [c.368]

    СИЯ. Однако в некоторых цеолитах, таких, как X и У, катиоиы распределены по различным центрам (гл. 2), причем степень заселенности отдельных центров зависит от типа катиона. Поэтому распределение последних по различным центрам существенным образом сказывается иа уменьшении общей энергии системы при обмене. В результате остаточные катионы в структуре цеолита, не подвергающиеся ионному обмену, могут оказывать влияние на ионообменные равновесия, которое необходимо учитывать. [c.551]

    Достижение более полного извлечения веществ из исходного раствора даже при весьма низкой их концентрации. В отличие от распределения, константы равновесия которого теоретически не зависят, а практически являются линейной функцией концентрации, зависимость величины коэффициентов адсорбции от концентрации, в особенности в водной фазе, нелинейна из-за выпуклости изотермы адсорбции. Поэтому достигается значительная величина адсорбции, а следовательно, и степень концентрирования даже при низких концентрациях вещества в исходном растворе. При ионном обмене это связано с тем, что органических ионов намного больше К й. не-орга точеских ионов. При проведении сорбции в динамических условиях это позволяет резко сократить габариты аппаратуры. [c.204]


Смотреть страницы где упоминается термин Ионный обмен равновесие: [c.170]    [c.146]    [c.603]    [c.608]    [c.262]    [c.710]    [c.200]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.211 , c.212 ]

Жидкостная колоночная хроматография том 3 (1978) -- [ c.102 ]

Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.205 ]

Физические методы анализа следов элементов (1967) -- [ c.109 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.211 , c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Ионные равновесия

Ионный обмен

Ионный обмен и иониты

Обмен ионов



© 2025 chem21.info Реклама на сайте