Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массоперенос в частице

    ПОСТОЯННОЙ процесса, обусловленное, очевидно, соответствующим изменением подвижности агрегатов и увеличением скорости массопереноса частиц даже в более слабом поле поверхностных сил. Экстремальный характер кинетических зависимостей в малых по величине зазорах с большим градиентом поверхностных сил отражает конкуренцию указанных выше факторов. В 0,1 % растворе, например, до 35 °С превалирует увеличение подвижности молекул, а далее скорость процесса определяется темпом снижения величины межфазного натяжения (кривая 1). Для агрегатов молекул в сильном поверхностном поле увеличение подвижности в данном диапазоне температур невелико, поэтому кривая имеет менее выпуклый характер (кривая 3), качественно и количественно приближаясь к вышеописанной зависимости (кривая 4) для 0,1% образца в зазоре величиной 6 мкм. [c.15]


    При температуре стенки менее ПО—100°С происходит спонтанная конденсация паров серной кислоты с образованием в пограничном слое аэрозоли с радиусом частиц 10 —10 в см. Массоперенос частиц аэрозоли определяется градиентом температур в пограничном слое (термофорез), и он в десятки раз меньше, чем для паров тех же концентраций. Образование тумана приводит к резкому снижению потока массопереноса при температурах стенки менее 110—100 °С и к провалу при температуре стенки 70—80 °С. Следовательно, интенсивность коррозии повторяет форму кривой изменения количества выпадающего на поверхности конденсата в зависимости от температуры стенки. [c.176]

    Массоперенос частиц, несущих электрический заряд [c.75]

    Если при прохождении поляризующего тока нарушается не только равновесие электрохимической стадии, но и баланс процессов массопереноса частиц О и К между объемом раствора и приэлектродным слоем, то концентрации окисленной и восстановленной форм у поверхности электрода (сои с к ) будут отличаться от их значений в объеме раствора (со и Ск). В этом случае зависимость между током / и потенциалом электрода Е, наблюдаемая при протекании на электроде реакции [c.111]

    В отличие от амперометрического детектора, где в соответствующий продукт превращается лишь 1 —10% электроактивных частиц, в кулонометрических детектора.х конверсия электроактивных частиц осуществляется полностью. Это достигается за счет применения электродов с большой поверхностью и ячеек с эффективным массопереносом частиц к электроду. Кулонометрический детектор менее чувствителен к изменениям скорости потока и температуры элюента, чем амперометрический. Количественное определение ионов кулонометрическим детектором можно проводить, исходя из площади хроматографического пика, не используя градуировочного графика. Однако кулонометрические детекторы сложны в изготовлении, обслуживании и эксплуатации. Их электроды легко загрязняются и трудно очищаются. [c.86]

    Теоретические принципы формальной кинетики, описанные вьпие, позволяют определить лишь кажущиеся константы скорости и знергии активации протекающих реакций. Для процессов массопереноса в поровой структуре катализаторов характерны возникающие градиенты концентраций, которые зависят от геометрических характеристик пор (размер, извилистость, шероховатость стенок пор и пр.), а также от размеров диффундирующих молекул и частиц сырья. При подборе и синтезе эффективных катализаторов для рассматриваемых процессов весьма важно выявить связь кажущихся показателей кинетики с основными факторами, определяющими эффективность массопереноса в порах катализатора. [c.79]


    Для замыкания уравнений (8.14) необходимо рассмотреть массоперенос внутри частицы. Сделаем это отдельно - с учетом и без учета циркуляции. [c.302]

    При высоком содержании катализатора в жидкости может оказаться, что скорость реакции определяется массопереносом. Максимально допустимый размер зерна зависит от вязкости и плотности жидкости и интенсивности газового потока. Размер частиц должен быть достаточно малым, чтобы избежать седиментации, и в то же время достаточно большим для обеспечения отделения. [c.360]

    Кроме П, и (гп ), заметное влияние на процессы массопереноса оказывает доля других пор и степень извилистости каналов, которую можно рассматривать как отношение среднего пути макрочастицы газа в пористом теле к линейному размеру в направлении потока I. Корпускулярные модельные структуры, составленные из сферических частиц одинакового размера, имеют при кубической укладке пористость Пу = 0,47 и коэффициент извилистости (/>//— 2 [9]. Для мембран с губчатой структурой оценка величин ( )/1 возможна на основе опытных данных по проницаемости, в частности, для пористого стекла Викор (Пу = 0,3), ( = 50 А) коэффициент извилистости пути с учетом локальных сужений капилляров достигает 5,9 [10, 11]. Для мембран (типа ядерных фильтров) с порами в форме прямых каналов отношение //= 1. [c.41]

    Скорость массопереноса к пористому материалу определяется скоростью массопереноса к внешней поверхности частиц, характеризуемой внешним коэффициентом массоотдачи и скоростью массопереноса к внутренней поверхности сорбента. Внешние коэффициенты массоотдачи в газовой фазе можно рассчитать по уравнению [24]  [c.65]

    Характер газового потока через пузырь (который является причиной рассматриваемого явления в целом) может изменяться от проточного (от основания к лобовой части) до замкнутой циркуляции. Последняя в предельном случае весьма сходна с конвективными токами внутри всплывающего в жидкости пузыря, возникающими благодаря действию нисходящего потока вязкой жидкости. Подробное изучение газового потока через пузыри представляет значительный интерес в тех случаях, когда существенное значение имеет массоперенос или химическая реакция между газом и твердыми частицами. Характер движения газа [c.133]

    В процессах тепло- и массопереноса от стенки к слою количественный вклад твердых частиц в принципе совершенно различен (см. гл. X), поэтому вряд ли оправдано рассмотрение аналогии в этих двух явлениях (см. также работу Марковой ). — Прим. ред. [c.377]

    В течение периода падающей скорости сушки температуры материала и сушильного агента возрастают во всех точках псевдоожиженного слоя. Здесь распределение тепла на удаление влаги и нагрев влажного материала зависит от кинетических характеристик тепло- и массопереноса внутри частиц. В периодических процессах это соотношение, кроме того, может еще изменяться во времени. При расчете сушильного процесса для периода падающей скорости по уравнениям теплообмена трудно точно определить среднюю разность температур м жду теплоносителем и поверхностью материала. Эти трудности увеличиваются при использовании для расчета сушильного процесса уравнений массообмена. В связи в этим недавно возникла тенденция выражать результаты эксперимента в форме и =/(<) приведем некоторые примеры. [c.516]

    Вопрос о скорости массопередачи между пузырем или каплей и сплошной фазой является одним из наиболее сложных в теории химико-технологических процессов. Процессы массопереноса в дисперсной и сплошной фазах имеют принципиальное различие. Оно является следствием различия гидродинамических условий в фазах сплошная фаза в значительной мере турбулизована за счет относительного движения дисперсной фазы дисперсная фаза состоит из отдельных частиц и имеет свои специфические источники конвекции. [c.197]

    Механизм теплопередачи в зернистом слое. В потоках газов с понижением числа Ве твердые частицы начинают играть активную роль в теплопроводности зернистого слоя при атом нарушается подобие процессов тепло- и массопереноса, имеющее место при больших числах Ке. Для анализа процесса переноса тепла в зернистом слое необходимо учесть три механизма теплообмена 1) перенос тепла движущимся газом 2) теплопроводность по твердой фазе через точки контакта частиц и 3) смешанный механизм теплопередачи по газовой и твердой фазам через поверхность их раздела. При высоких температурах необходимо учесть также лучистый теплообмен мы, однако, ограничимся диапазоном температур, характерным для каталитических процессов, в котором лучеиспусканием можно пренебречь по сравнению с остальными механизмами переноса тепла. [c.241]


    В силу стохастического характера явлений массопереноса достижение равновесного состояния подчинено вероятностным законам распределения энергии и массы в пространстве и по времени. К наиболее существенным причинам неравновесности массообмена в промышленных условиях можно отнести неравномерность распределения частиц потока по времени пребывания обратный заброс фаз в результате механического уноса недостаточное время контакта фаз или межфазной поверхности контакта. Степень достижения равновесия на ступени разделения определяется гидродинамикой потоков жидкости и пара, их взаимодействием, а следовательно, временем пребывания в аппарате. [c.86]

    При расчете реакторов для систем газ - твердое вещество (частицы) основными задачами при моделировании являются оценка гидродинамической структуры фаз определение удельной поверхности реакции оценка изменения состояния твердых частиц в ходе реакции определение соотношения скоростей процессов тепло- и массопереноса. [c.19]

    Тройная аналогия между переносом количества движения (импульса), тепла и вещества. Теоретическим анализом и многочисленными экспериментальными исследованиями установлено, что между механизмами переноса механической энергии, тепла и массы в определенных условиях существует приближенная аналогия. Известно, например, что в ядре турбулентного потока вследствие интенсивного перемешивания частиц происходит выравнивание их скоростей, а в процессах тепло- и массопереноса — выравнивание соответственно температур и концентраций. В пределах же пограничного слоя наблюдается резкое падение скоростей, температур и концентраций вследствие пренебрежимо малого действия турбулентных пульсаций. [c.152]

    При определенном размере частиц достигается полное использование внутренней поверхности и дальнейшее измельчение их не ведет к повышению активности катализатора. С ростом температуры резко растет скорость реакции. Скорость массопереноса незначительно повышается с температурой. Из этого следует, что для более высоких температур полное использование внутренней поверхности должно наблюдаться на частицах меньшего размера. Это подтверждают и данные рис. 131. Если при 550° С полному использованию внутренней поверхности соответствует относительная величина внешней поверхности — 0,8, то при 630° С она повышается до 1,2. Аналогичные зависимости были получены нами для процессов Лот конверсии окиси углерода, синтеза 1 2 аммиака и метанола, окисления сернистого ангидрида. [c.245]

    Если частицы катализатора настолько малы, что температуру и состав их можно принять постоянными, и если предположить, что газ внутри частиц тоже однороден, то твердую фазу, как и псевдо-ожижающую газовую, можно считать эквивалентной модифицированному проточному реактору с перемешиванием член уравнения материального баланса, описывающий поток вещества, заменяется выражением для массопереноса между фазами, а член уравнения теплового баланса, представляющий поток тепла, опускается совсем. Таким образом, для частиц катализатора имеем  [c.20]

    Мы получили такой же результат, как для трубчатого реактора с числом Льюиса, равным 1, но заметим, что здесь линейная связь между температурой и концентрацией получается и в том случае, когда D = а. Это очень важно, поскольку при отсутствии турбулентного перемешивания более трудно доказать справедливость предположения о том, что тепло- и массоперенос внутри частиц катализатора происходит по одинаковому механизму. [c.120]

    Так как собственные значения играют важную роль в различных задачах катализа, имеет смысл проверить другой набор граничных условий. Предположим, что для поверхности частицы катализатора существует ограничение по массопереносу, так что поток, Достигаю- [c.135]

    Реакции с участием газа и твердого вещества также сопровождаются массопереносом, но он происходит в пределах одной газовой фазы и заключается в подводе реагирующих веществ из ядра потока газа к поверхности твердого вещества, на которой протекает реакция, и отводе продуктов реакции в обратном направлении. Твердое вещество может быть либо одним из реагентов, либо катализатором. В обоих случаях на скорость процесса существенно влияет площадь поверхности частиц (гранул) твердого вещества. Для ее увеличения твердое вещество либо дробят на мелкие частицы, либо используют в виде мелкопористых гранул. [c.270]

    При анализе стационарного массопереноса к одиночной сферической частице или от газового пузыря в жидкость рассматривают уравнение конвективной диффузии в сферических координатах  [c.39]

    При этом принимают следующие граничные условия для случая массопереноса вещества из жидкости к сферической твердой частице, на поверхности которой протекает химическая реакция, с = О при т = и с = Сд при т —> оо для случая массопереноса с поверхности газового пузыря в жидкость с = с в при г = /2 и с = О при г —> оо. [c.39]

    Как показал математический анализ гидродинамических факторов, зависимость скорости коксообразования и коксоот-ложения от массовой скорости сырья не монотонна и имеет несколько экстремумов, обусловленных конкуренцией массо-переноса и реакций уплотнения (образования предшественников кокса) в пристенном слое [232]. Таким образом, на скорость отложения кокса влияют в различных реакторах и в разной степени, как массоперенос частиц — предшественников кокса в центральной части потока, по данным [231], так и условия, создающиеся в пристенной пленке, по данным [212]. В частности, с увеличением температуры возрастает роль диффузии молекул углеводородов к формирующейся углеродной поверхности [51], согласно модели [212]. [c.88]

    Лимитирующей стадией является массоперенос через границ ный слой. На это указывают первый порядок реакции по серебру а также константа скорости реакции, равнозначная коэффиицент) массопереноса частиц в реакторе при интенсивном перемешивЗ НИИ, и энергия активации (17,2 кДж/моль). [c.58]

    В случае систем металл (амальгама металла) комплексы металла наряду с массопереносом комплексов и атомов металла в общем случае необходимо учитывать массоперенос частиц лиганда, поскольку последние освобождаются (при катодных процессах) либо связываются (при анодных процессах). Если, однако, концентрация свободного лиганда намного превосходит концентрацию комплексов металла в растворе и атомов металла в амальгаме, то массоперенос лиганда можно не учитывать, поскольку его концентрация у поверхности электрода в указанных условиях при прохождении поляризующего тока практически не изменяется. Рас смотрим вначаде этот более простой случай, Кчк и ранее предполагается, чтр в рае  [c.102]

    Другого рода проблемы устойчивости возникают в реакторах с неподвижным слоем катализатора в связи с процессами тепло- и массопереноса от потока реагирующих веществ к поверхности частиц катализатора. Это вопросы термической устойчивости стационарного режима отдельной частицы. Мы рассмотрим только простейший случай. Предположим, что вещество А вступает в реакцию первого порядка и внутридиффузионное торможение процесса отсутствует. Тогда концентрация вещества А у активной поверхности (с) будет отличаться от его концентрации в объеме (с), и скорость реакции будет определяться квазигомогепной кинетической зависимостью (см. раздел VI.2)  [c.285]

    Обсуждаются процессы массопереноса в пористых телах различной структуры и в модельных системах (пленках и капиллярах) на основе теории поверхностных сил. Особоег внимание обращается на физико-химический механизм процессов массопереноса. Пористые тела рассматриваются как гетерогенные дисперсные системы, между частицами которых действуют молекулярные, электростатические, структурные и стерические силы. Систематизированы и обобщены результаты теоретических и экспериментальных исследований, проведенных как в нашей стране, так и за рубежом. [c.288]

    Проблему устойчивости реакторов детально исследовал Баркелью в уравнениях материального и теплового баланса им были приняты следующие упрощения. Тепло- и массоперенос посредством диффузии в продольном направлении считались пренебрежимо малыми по сравнению с конвекцией. Термическое сопротивление слоя в радиальном направлении считалось малым по сравнению с термическим сопротивлением в пространстве между слоем и стенкой реактора. Было принято, что зависимость скорости реакции от концентрации есть функция концентрации только одного компонента. Не учитывалось также сопротивление тепло- и массо-обмену в пространстве между потоком и частицами катализатора. [c.293]

    Для раздельного анализа трех стадий массопереноса в псевдоожиженных системах массообмен между стенкой и слоем (раздел I), а также между твердыми частицами и ожижающим агентом (раздел II), следует рассматривать в отсутствие сегрегации фаз (т. е. газовых пузырей). Это можно осуществить кепериментально, так как для развития газовых пузырей необходима некоторая конечная высота слоя. В жидкостных псевдоожиженных системах дискретная фаза (пузыри) образуются на высоте , превышающей 0,5—1м при газовом псевдоожижении пузыри заметных размеров ( с1р) присутствуют уже на высоте 0,2 м. Таким образом, данные по масообмену могут быть получены как в отсутствие пузырей (однородное псевдоожижение), так и а тех случаях, когда дискретная фаза оказывает влияние на скорость массопереноса (неоднородное псевдоожижение). В разделах I и II мы будем рассматривать только однородные псевдоожиженные системы неоднородные будут основной темой последующих разделов. [c.377]

    Рассмотрена противоточная многоступенчатая промывка осадка ца установке, включающей ряд барабанных вакуум-фильтров с поверхностью 5 м , каждый из которых снабжен бесступенчатым вариатором скорости вращения в пределах 0,2—2 об-мин [254]. Математическое описание процесса, в частности, содержит а) экспоненциальную зависимость, характеризующую уменьшение скорости фильтрования в результате постепенного закупоривания пор ткани твердыми частицами б) довольно сложную зависимость 1=1 (ц, п), где степень извлечения растворимого вещества на -той ступени промывки =Сг+1/с безразмерное отношение г]=КаЬос1 безразмерное время промывки п=У .ж1Уо скорость движения промывной жидкости в порах осадка W=W a +1 и с,- — концентрации растворимого вещества в жидкой фазе осадка после -Ы-ой и -ой ступени К — коэффициент массопереноса, м-с а — удельная поверхность частиц осадка, м -м а — доля сечения осадка, занятая движущейся л(идкостью. Зависимость для I получена на основе дифференциального уравнения в частных производных гиперболического типа [278]. [c.228]

    Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес. [c.204]

    В тепло-массообменных процессах воздействия должны быть связаны с ускорением переноса энергии и массы. Из физической сущности тепло-массопереноса следует, что интенсификация может идти по пути создания больших градиентов, влияния на конвективный перенос, непосредственно на коэффициентны переноса, а также по пути управления распределением источников. Когда создание больших градиентов лимитировано свойствами перерабатываемых веществ или технологическими условиями, перспективно физическое воздействие через конвективный тепло-массоперенос. Существенный вклад может дать управляемое пространственно-временное распределение внутрен-. них источников тепла, генерируемых различными полями или частицами. Наконец, возможно влияние непосредственно на коэффициенты переноса, например утоньчение пограничных слоев под воздействием колебаний и т. п. [c.18]

    В работе изложены теоретические основы, необходимые для понимания и расчета процессов массовой кристаллизации в различных кристаллизаторах, выведены уравнения движения н тер.модина.мики гетерогенных сред, в которых происходит Гфоцесс массовой кристаллизации. Получены замкнутые системы уравнений для полидисперсиых смесей с учетом фазовых переходов (кристаллизация, растворение), относительного движения фаз, хаотического движения и столкновений частиц. Определены движущие силы массопереноса в процессе кристаллизации. Описаны имеющиеся в современной литературе решения задач о тепломассообмене около частиц, теории за-родышеобразования и роста кристаллов. Получено математическое описание процесса массовой кристаллизации и как частные случаи — математические модели кристаллизаторов различных типов. Рассмотрены задачи ои-тимизации промышленных кристаллизационных установок. [c.2]

    Массовые скорости подачи в реакторе Арко значительно ниже, чем в промышленных, поэтому он не соответствует первому требованию к лабораторным реакторам. Это не катастрофично, так как и реактор, и регенератор работают в адиабатическом режиме, а относительные скорости движения частиц катализатора и газа в лабораторном и промышленном реакторах не слишком сильно отличаются друг от друга, поэтому тепло- и массоперенос между катализатором и газом может быть одпиаковым. Реактор выходит на стационарный режим удивительно быстро, что позволяет проводить два опыта за одну 8-часовую смену. Несмотря на удачную конструкцию этого реактора, управление им представляет нелегкую задачу. Поэтому для стандартных испытаний нужны были более простые методы, и появились микрореакторы. [c.64]

    Для определения кинетики необходимо использовать безгра-диентные или проточно-циркуляционные установки [39, 41, 121], позволяющие проводить реакцию в течение длительного времени, достаточного для того, чтобы образец катализатора достиг стационарных условий. Циркуляционный реактор похож на дифференциальный, но за счет внешней или внутренней циркуляции газа температурные и концентрационные градиенты по слою катализатора, обусловленные протеканием реакции, сводятся к минимуму. Как дифференциальный, так и циркуляционный реакторы применяют для того, чтобы добиться изотермического режима. Но на практике к нему приближается только циркуляционный реактор. Заметим, что для измерений истинной кинетики необходимо вместо таблеток использовать очень мелкие частицы катализатора с тем, чтобы свести к минимуму влияние массопереноса. [c.260]

    Например, очень интенсивно проходит обжиг колчедана в псевдоожиженном слое благодаря малым размерам частиц, интенсивному перемешиванию газовой фазы и развитой поверхности твердого реагента, обеспечивающих высокую скорость внутрифаз-ного массопереноса. В колоннах синтеза аммиака в качестве катализатора используют гранулы губчатого железа, имеющие высокую удельную поверхность. [c.270]


Смотреть страницы где упоминается термин Массоперенос в частице: [c.115]    [c.460]    [c.10]    [c.194]    [c.252]    [c.307]    [c.188]    [c.63]    [c.18]    [c.313]   
Смотреть главы в:

Новый справочник химика и технолога Процессы и аппараты Ч1 -> Массоперенос в частице




ПОИСК





Смотрите так же термины и статьи:

Массоперенос



© 2025 chem21.info Реклама на сайте