Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая стабильность связи

    Гибкие полимерные материалы, в которых эфирная связь является частью полимерной цепи, находят широкое практическое применение. Развитие исследований в этой области стимулируется тем, что природа эфирной связи, в особенности низкий по сравнению с алканами торсионный барьер (см. разд. 4.3.3) и химическая стабильность связи С—О в простых эфирах (см. разд. 4.3.6), могут обеспечить необходимые свойства для использования полиэфиров в качестве материалов с высокими эксплуатационными характеристиками [265]. [c.354]


    Химическая стабильность связи С—Р [c.543]

    Поскольку речь идет о химической стабильности связи 51—С, то дать ей общую характеристику невозможно. Рассмотрим ранее приведенный пример необыкновенной устойчивости тетраметилсилана к действию концентрированной серной кислоты и противоположный ему пример легкого гидролитического расщепления связи —С=С—81. Здесь решающим оказывается поведение органического радикала, связанного с кремнием, поведение других реагентов, условия реакции и влияние остальных заместителей. [c.201]

    Дать общую характеристику химической стабильности связи Si—С трудно. На ее стабильность в химических реакциях решающее влияние оказывает химическая природа органического радикала, связанного с кремнием, поведение радикала в той или другой реакции, условия реакции, влияние других заместителей у атома кремния. Арильные радикалы более чувствительны к действию сильных минеральных кислот, чем алкильные. При нагревании с концентрированной серной кислотой, соляной и азотной кислотами связь Si—С разрывается по реакции  [c.17]

    Олефиновые и диолефиновые углеводороды цепной структуры имеют одну (олефиновые) или две (диолефиновые) двойные связи. Общая формула олефинов — С Нг , диолефинов — С Н2 2. Ввиду наличия двойных связей углеводороды этих групп более реакционно способны и менее химически стабильны, чем парафиновые, нафтеновые и ароматические углеводороды. Олефиновые и диолефиновые углеводороды способны к реакциям присоединения, в том числе и окисления. Поэтому присутствие углеводородов этих групп в авиационных топливах не допускается. [c.8]

    Парафиновые (алкановые) углеводороды, входящие в состав топлив, имеют хорошую химическую стабильность при хранении, низкие температуры плавления и кипения, наибольшую весовую теплоту сгорания и наименьшую плотность. Объемная теплота сгорания в связи с этим у парафинов меньше, чем у других групп углеводородов.  [c.11]

    Требование, заключающееся в том, чтобы моторное масло сохраняло свой состав на протяжении экономически обоснованного периода эксплуатации, связано с понятием о химической стабильности масел, которая определяется главным образом склонностью к термическому окислению. [c.491]

    Азотсодержащие соединения содержатся в бензинах в значительно меньших количествах, чем сернистые. Ими стали интересоваться лишь в последнее время в связи с обнаружением их влияния на химическую стабильность бензинов и эффективность добавляемых присадок. [c.25]


    Описанное явление регламентируется такими показателями химической стабильности бензина, как индукционный период и концентрация фактических смол. К показателям качества бензина, наиболее склонным к ухудшению в условиях хранения, относятся также фракционный состав, а для этилированного содержание тетраэтилсвинца (ТЭС), выносителя свинца и октановое число. Отклонение значений указанных показателей качества бензина от требований ГОСТ 2084-77 в основном и определяет предельно допустимые сроки его хранения в различных температурных и климатических условиях, после чего необходимо исправление его качества путем смешения со свежевыработанным бензином одноименной марки, а это связано с большими трудовыми и материальными затратами. Поэтому для повышения химической стабильности бензинов на заводах в них вводят антиокислительные присадки. [c.11]

    Опытный образец этилированного бензина АИ-93 отличался от товарного этилированного тем, что в состав базы, кроме бензина каталитического риформинга обычного режима, входило еще 30% бензина каталитического крекинга. В связи с этим можно было бы ожидать, что этот образец будет обладать худшей химической стабильностью. Однако суммарное [c.97]

    Прямое соединение углерода с водородом удается осуществить лишь при температурах выше 1200° С. При низких температурах связи С—Н в предельных углеводородах весьма прочны, что и объясняет высокую химическую стабильность этих углеводородов при умеренных температурах. С повышением температуры прочность связи С—Н понижается, а реакционная способность парафинов повышается. Следовательно, стойкость и химическая пассивность предельных углеводородов не являются неизменными их свойствами. Изменением внешних условий реакции (температура, катализатор, излучение) удается разбудить реакционную способность этих углеводородов, и они вступают в самые разнообразные химические реакции. [c.54]

    Эти масла предназначены для смазки цилиндров и клапанов компрессоров, а также для герметизации камер сжатия и штоков поршней компрессоров. Особенностью работы компрессорных масел является их контакт с различными высокотемпературными средами и хладоагентами. В связи с этим они должны обладать высокой термической и химической стабильностью, а также высоким индексом вязкости и хорошей подвижностью при низких температурах. [c.348]

    Кроме того, кр.екинг-бензины обладают низкой химической стабильностью. Содержащиеся в крекинг-бензинах непредельные уг- леводороды, в особенности тё, в молекуле которых имеются две двойных связи, под воздействием света, тепла и растворенного кислорода конденсируются, полимеризуются, окисляются и образуют смолы. Наличием смол и полимеров объясняется повышенная склонность крекинг-бензина к нагарообразованию в двигателях. [c.184]

    Показателем, в известной степени характеризующим потенциальную химическую стабильность, является йодное число , определяемое по методу ГОСТ 2070—82. Определение йодного числа основано на способности непредельных углеводородов присоединять йод по месту двойной связи. При этом к одной молекуле моноолефина присоединяется одна молекула (два атома) йода. Таким образом, йодное число, измеряемое в граммах йода на 100 г бензина, непосредственно связано с содержанием в нем наиболее нестабильных непредельных углеводородов. Зная среднюю молекулярную массу углеводородов бензина, по йодному числу можно определить и массовое содержание в бензине непредельных углеводородов. Чем выше йодное число бензина, тем ниже его химическая стабильность при хранении (табл. 7.3). [c.260]

    В заключение, оценивая химическую стабильность современных автомобильных бензинов, следует иметь в виду две тенденции. Во-первых, из-за увеличения глубины переработки нефти должно возрастать использование в автомобильных бензинах компонентов каталитического крекинга, а следовательно, и содержание нестабильных непредельных углеводородов. Во-вторых, в связи с появлением специальных экологических требований к бензинам [19] будет происходить систематическое ужесточение норм на содержание серы и свинца. В перспективе массовые автомобильные бензины должны содержать минимум серы (0,01—0,05%) и свинца (не более 0,15 г/дм ), умеренное количество непредельных углеводородов и пакет присадок, включающий эффективные противоокислители. Такие бензины должны обладать достаточно высокой химичес- [c.270]

    Образование отложений в карбюраторе, впускном трубопроводе и на впускных клапанах в основном связано с содержанием смолистых веществ в бензине, образовавшихся в процессе получения и хранения бензина. Дополнительное количество смол образуется в бензине при его окислении во впускной системе под воздействием кислорода воздуха повышенной температуры и каталитического влияния металла. Таким образом, количество низкотемпературных отложений в двигателе зависит от концентрации фактических смол в бензине и от его химической стабильности. Следует отметить, что некоторая часть низкотемпературных отложений на деталях карбюратора все время смывается свежими порциями бензина. Моющая способность бензина в значительной степени определяется его групповым углеводородным составом. Следовательно, склонность бензина к низкотемпературным отложениям в определенной степени зависит и от его углеводородного состава. [c.273]


    В связи с гибкостью углеродных волокон, возможностью плетения на их основе проводов, значительное число ра(5от выполнено по получению МСС, в которых в качестве углеродной матрицы применено углеродное волокно. МСС на основе углеродных волокон представляют практический интерес при их применении в космических аппаратах [6-71]. В этом случае можно достигнуть повышения электропроводности и ее низкого температурного коэффициента при допустимых значениях механических свойств и химической стабильности на воздухе и в вакууме, снижения веса кабелей и проводов в системах электропитания. Возможно и улучшение их вибростойкости. МСС УВ позволяют пропускать ток до 200 А/см . [c.312]

    В процессе карбонизации в системе накапливаются наиболее прочные химические связи, и она стремится к некоторому равновесному содержанию химически стабильных соединений. Их накопление при карбонизации в изотермических условиях со ступенчатым подъемом температуры проявляется в ступенчатом изменении элементного состава и свойств КМ в направлении равновесия на каждой изотермической стадии [47...51]. Содержание углерода непрерывно возрастает и наблюдаются температурные интервалы интенсивного удаления или накопления других элементов. Так, основная масса водорода удаляется в области 200... 1000 , серы - при 400. .. 1600°С, ванадия и титана - при Т > 2000 С [33,34,37,39,40]. [c.12]

    К полярным эластомерам относятся бутадиен-нитрильные каучуки СКН-18, СКН-26 и СКН-40. Их релаксационные спектры отличаются от спектров неполярных эластомеров тем, что наряду с -релаксационными переходами здесь наблюдается еще и л-процесс. В полярных эластомерах между полярными группами в макромолекулах (в бутадиен-нитрильных эластомерах — СЫ-группы) возникают локальные диполь-дипольные поперечные связи, которые являются одним из видов физических узлов молекулярной сетки эластомера. Они более стабильны, чем микроблоки надмолекулярной структуры (образованные полибутадиеновыми участками цепей), и менее стабильны, чем химические поперечные связи. В результате л-процесс (см. рис. 12.6), природа которого объясняется подвижностью локальных диполь-дипольных связей, характеризуется временем релаксации Тя большим, чем времена релаксации Я-процессов, и меньшим, чем время химической релаксации сшитого эластомера. [c.348]

    Техническое совершенствование двигателей внутреннего сгорания и рост производства их вызывают все новые и более высокие требования к качеству и количеству моторных топлив. Повышение степени сжатия и введение наддува в карбюраторных двигателях связаны с необходимостью улучшения качества горючих, главным образом их антидетонационной стойкости, химической стабильности и понижения температур застывания. [c.6]

    Цикламаты химически стабильны. Связь К—5 разрывается под действием азотистой кислоты (эта реакция используется для аналитического определения содержания цикламатов) [19]. [c.82]

    С начала возникновения идо середины XX века основным назначением этого "знаменитого" в свое время процесса было получение из тяжелых нефтяных остатков дополнительного количества бензинов, обладающих, по сравнению с прямогон — ными, повышенной детонационной стойкостью (60 — 65 пунктов по ОЧММ), но низкой химической стабильностью. В связи с внедрением и развитием более эффективных каталитических процессов, таких, как каталитический крекинг, каталитический риформинг, алкилирование и др., процесс термического крекинга остаточного сырья как бензинопроизводящий ныне утратил свое промышленное значение. В настоящее время термический крекинг применяется преимущественно как про — цесс термоподготовки дистиллятных видов сырья для установок коксования и производства термогазойля. Применительно к тяжелым нефтяным остаткам промышленное значение в со— временной нефтепереработке имеет лишь разновидность этого [c.7]

    Особенно заметно указанные примеси влияют на химическую стабильность дизельных топлив, в которых содержание непредельных углеводородов относительно невелико. Возникновение и развитие окислительных процессов в дизельных топливах связаны в основном с наличием сернистых и кислородсодержащих соединений, которое, в свою очередь, зависит от исходного сырья и технологии получения. Гидроочищенные дизельные топлива, лишенные в результате гидрирования большей части активных сернистых и кислородсодержащих соединений, независимо от качества и состава исходного прямогонного дистиллята, как правило, более стабильны в процессе хранения и применения, чем негидроочищенные. [c.55]

    Образующийся свободный радикал инициирует дальнейший распад полисульфидных связей в полихлоропренполисульфиде. Процесс деструкции продолжается до образования стабильных связей К—5—К. В отсутствие тиурама образующиеся полимерные радикалы реагируют по двойной связи или а-метиленовой группой других полимерных молекул, вызывая структурирование полимерных цепей. Процессы деструкции под влиянием тиурам-полисуль-фидных связей происходят частично при щелочном созревании латекса и значительно более интенсивно при вальцевании или термопластикации, с одновременным взаи1 одействием образующихся полимерных радикалов с тиурамом по вышеуказанной схеме. Применение указанной системы регуляторов обеспечивает получение низкопластичного полимера, легко подвергающегося выделению из латекса методом зернистой коагуляции с образованием ленты на лентоотливочной машине, механически достаточно прочной в процессах формования, отмывки и сушки. Полимеры, полученные в присутствии серы и содержащие тиурам, легко пластицируются в процессе механической обработки, особенно в присутствии химически активных пластицирующих соединений (дифенилгуанидина совместно с меркаптобензтиазолом и др.) [24]. По мере израсходования тиурама или его разложения при нагревании или длительном хранении преобладают процессы структурирования. [c.374]

    Известен и другой путь получения устойчивых к терлшокисж нию эластомеров атомы водорода в алифатической углеводородной цепи, с отрыва которых начинается цепной процесс термоокис-ления, могут быть заменены на атомы фтора. Высокая термическая и химическая стабильность полифторированных органических соединений определяется как особенностями углерод-углеродных связей в них, так и характером связей между атомами углерода и фтора. [c.501]

    Технические свойства нефтепродуктов, выделенных в третью группу, не связаны с их применением, а проявляются в процессах хранения и транспортирования. Эту группу моЯсно разделить на две подгруппы. Первая объединяет те свойства, которые определяют сохранность качества нефтепродуктов в процессах их транспортирования и хранения. Все свойства этой подгруппы могут быть отнесены к трем видам химическая и физическая стабильность и биологическая стойкость. В понятие физическая стабильность входят склонность к потерям от испарения, к расслаиванию, гигроскопичность, загрязненность и т.п. Под химической стабильностью имеется в виду способность нефтепродукта (углеводородов, неуглеводо-роднь1х примесей и присадок) противостоять окисляющему воздействию кислорода воздуха, а в отдельных случаях химическому воздействию среды. Биологическая стойкость подразумевает защищенность нефтепродукта от воздействия плесени, грибков и бактерий. [c.10]

    Химическая стабильность бензинов определяется составом и строением углеводородов [8]. Парафиновые, нафтеновые и ароматические углеводороды в условиях хранения и транспортирования окисляются относительно медленно. Наибольшей склонностью к окислению обладают непредельные углеводороды. Способность последних взаимодействовать с кислородом воздуха зависит от их строения, числа двойных связей и их расположения. Менее стабильными являются диолефиновые углеводороды с сопряженными двойными связями и MOHO- и диолефиновые углеводороды, содержащие бензольное кольцо. Олефиновые углеводороды с двойной связью в конце углеродной цепи окисляются труднее, чем олефины с двойной связью в середине цепи. Циклические олефины окисляются легче, чем олефины с открытой цепью, а олефины с разветвленной цепью окисляются легче, чем аналогичные углеводороды с прямой цепью. [c.24]

    Здесь следует объяснить особенности ароматичности, проявляемые в бензоле а) плоский никл с выравненными связями С—С, промежуточными по длине между ординарной и двойной связями б) неха-рактерность реакций присоединения, несмотря на ненасыщенность углеводорода, т. е. известная химическая стабильность бензольного кольца в) анизотропия диамагнитной восприимчивости молекулы. [c.115]

    Основываясь на химических свойствах веществ и на ранней атомной теории прежде различали два типа химических связей — ионную и ковалентную, а стабильность или инертность веществ ставили в зависимость от заполнения оболочек электронной конфигурации инертных газов (ns ns np , п — 1) d ns np и т. д.). Позднейшими исследованиями было найдено, что мера стабильности связана также с полузаполненными или заполненными подоболочками электронов (например, rtd , nd ). [c.20]

    Химическая стабильность. Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном зфанении, перекачках, транспортировании или при нагревании впускной системы двигателя. Хилшческие изменения в бензине, происходящее в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов. [c.23]

    Окисление топлив представляет собой сложный, многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха. Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления. Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефршы с сопряженными двойными связями. Высокой реакционной способностью обладают [c.23]

    Попытки теоретической интерпретации теории жестких и мягких кислот и оснований. С помощью этой теории возможны качественные предсказания и объяснения для реакций между нуклеофильными и электрофильными соединениями, а также оценка стабильности образовавшихся веществ. Поскольку ход реакции и стабильность связей зависят ог целого ряда факторов, количественная трактовка всех этих факторов возможна только с определенной степенью приближения. Однако, несмотря на эти ограничения, можно 1 редставить себе основные принципы теории Пирсона с помощью известных моделей химической связи. [c.399]

    Молекула бензола в методе МОХ. Рассматривая проблему ароматичности, остановимся в первую очередь на бензоле и отметим его особенности, характерные для ароматических соединений а) плоский цикл с выравненными связями С—С, промежуточными по длине между ординарной и двойной связями б) нехарактерность реакций присоединения, несмотря на ненасыщенность углеводорода, т. е. известная химическая стабильность бензольного кольца в) анизотропия диамагнитной восприимчивости молек> лы. [c.227]

    С длинами волн достаточно большими, чтобы не происходили процессы химической дезактивации. Ясно, что возбуждение нестабильных состояний очень нежелательно с точки зрения флуоресценции. Более того, во многих молекулах, в которых максимум поглощения соответствует энергии, большей энергии разрыва наименее стабильной связи, флуоресценция не наблюдается. Во-вторых, скорость внутримолекулярного обмена энергией должна быть меньше скорости радиационных процессов. Это означает, что интеркомбинационный переход должен быть медленным (мы уже отмечали выше и будем обсуждать позже в этом разделе низкую эффективность процесса внутренней конверсии 5]V -So) в разд. 4.5мыувидим, что IS обычно является медленным для состояний (л, я ) (я, я ) по сравнению с состояниями (я, я ) и что эффективность процесса растет с уменьшением разницы в энергии 5i и T l. Экспериментальные наблюдения флуоресценции находятся в соответствии с этими идеями простые карбонильные соединения, в которых наиболее длинноволновое поглощение соответствует переходам п- -п, редко флуоресцируют (но часто фосфоресцируют), в то время как ароматические углеводороды (с я- -я -поглощением) часто флуоресцируют. Увеличение сопряжения в углеводородах сдвигает первый максимум поглощения [c.91]

    Ранее показано, что стабильность — важнейший показатель, характеризующий способность неионогенных ПАВ (НПАВ) сохранять химический состав, структуру и физико-химические свойства при воздействии пластовой воды и нефтеносной породы и термобарических условий пласта. При разработке эффективных нефтевытесняющих композиций для увеличения нефтеотдачи пластов определение химической стабильности различных НПАВ (например, АФэ-12, АФд-6 и др.) в условиях, близких к пластовым, оценка количества оставшегося НПАВ и химического состава продуктов разложения являются важными и актуальными. В связи с этим в НПО Союзнефтеотдача были выполнены систематические научные исследования с участием автора. Исследованы причины химической нестабильности НПАВ и предложены методы оценки степени стабильности ПАВ. [c.111]


Смотреть страницы где упоминается термин Химическая стабильность связи: [c.120]    [c.229]    [c.359]    [c.43]    [c.21]    [c.34]    [c.24]    [c.256]    [c.79]    [c.230]    [c.252]   
Смотреть главы в:

Успехи химии фтора -> Химическая стабильность связи

Успехи химии фтора Тома 1 2 -> Химическая стабильность связи




ПОИСК





Смотрите так же термины и статьи:

Связь стабильность

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте