Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное присоединение к атомам углерода

    В настоящей главе рассматриваются реакции присоединения к ДВОЙНЫМ связям углерод — кислород, углерод — азот, углерод— сера и к тройной связи углерод—азот. Исследование механизма этих реакций намного проще, чем процессов присоединения к кратным связям углерод — углерод, описанных в гл. 15 [1]. Большинство вопросов, обсуждавшихся при рассмотрении последних реакций, либо не возникают здесь вообще, либо на них очень легко дать ответ. Поскольку связи С = 0, С = Ы и С = М сильнополярны и положительный заряд локализован на атоме углерода (кроме изонитрилов, см. разд. 16.3), то нет сомнений относительно ориентации несимметричного присоединения к ним нуклеофильные атакующие частицы всегда присоединяются к атому углерода, а электрофильные — к атому кислорода или азота. Реакции присоединения к связям С = 5 встречаются значительно реже [2], и в этих случаях может наблюдаться противоположная ориентация. Например, из тиобен-зофенона РЬ2С = 5 при обработке фениллитием с последующим гидролизом получается бензгидрилфенилсульфид РЬгСНЗРЬ [3]. Стереохимию взаимодействия, как правило, рассматривать не приходится, так как невозможно установить, происходит ли син- или анти-присоединение. При присоединении УН к кетону, например  [c.321]


    Нуклеофильное замещение является простой реакцией замещения, в которой нуклеофильный агент (основание) приближается к атому углерода или фосфора с дефицитом электронов (электрофильный центр) и образует с ним связь, замещая при этом какой-либо другой атом, например О, N или 5. Замещаемый атом уходит вместе с неподеленной парой электронов и с любой другой присоединенной к нему химической группировкой, причем все это вместе называется уходящей группой. Обычно для завершения реакции необходимо, чтобы одновременно с замещением или после него к атому О, N или 5 уходящей группы присоединился протон, происходящий из кислотной группы фермента или воды. Заметим, что основание В (которое может нести отрицательный заряд или быть электронейтральным) часто образуется путем ферментативного удаления протона от сопряженной кислоты ВН. [c.91]

    В молекулах альдегидов с атомом углерода карбонильной группы связаны два атома водорода или один атом водорода и одна алкильная группа, а в молекулах кетонов — две алкильные группы. Химические свойства альдегидов и кетонов определяются наличием карбонильной группы, которая способна к нуклеофильному присоединению, потому что на атоме углерода имеется частичный положительный заряд (разд. 3,6), [c.157]

    Реакции присоединена я. В реакциях присоединения атом углерода карбонильной группы взаимодействует с нуклеофильным реагентом, двойная связь разрывается с образованием аниона, вступающим на втором этапе реакции во взаимодействие с протоном  [c.120]

    Выход продукта восстановления можно снизить, если в реакционную смесь предварительно ввести эквимольное количество безводного бромида магния. Как было упомянуто выше, на атоме магния в этой соли имеется больший, по сравнению с реактивом Гриньяра, дефицит электронной плотности, так как атом магния в этом соединении обеими валентностями связан с более электроотрицательными, чем атом углерода, атомами брома. Поэтому он более прочно, чем реактив Гриньяра, координируется по атому кислорода карбонильной группы, ограничивая возможность гидридного перехода от -углеродного атома радикала )еактива Гриньяра к атому углерода карбонильной группы формула (36)], и тем самым повышает выход продукта нуклеофильного присоединения. [c.283]


    Отсутствие основности и нуклеофильной реакционной способности атома углерода можно объяснить тем, что он находится, как и в ацетилене, в состоянии sp-гибридизации. Если учитывать, что в отличие от ацетилена в СО атом углерода связан с более электроотрицательным атомом кислорода, кислотность связи С Н в случае присоединения протона к СО будет еще выше, чем в ацетилене. [c.393]

    Наиболее характерной особенностью реакций альдегидов и кетонов является нуклеофильная атака на атом углерода карбонильной группы с последующим присоединением по кратной связи. Реагенты, способные присоединяться по карбонильной группе, можно подразделить па три группы  [c.50]

    Эти реакции, называемые реакциями нуклеофильного присоединения к карбонильной группе, имеют сходство с SN 2-реакциями. Карбанион можно рассматривать как нуклеофил, атакующий р-орбиталь атома углерода. При этом электронная пара, участвовавшая в я-связи, смещается к атому кислорода, а а-связь между атомом углерода и кислородным атомом сохраняется, т. е. происходит присоединение, а не замещение. [c.393]

    Реакция присоединения — отщепления. Реакция, в которой нуклеофильная частица замещает уходящую группу, связанную с карбонильным атомом углерода процесс протекает в две стадии. На первой стадии нуклеофильная частица присоединяется по углерод-кислородной я-связи, что приводит к алкокси-аниону НО . На второй стадии пара электронов, принадлежащая отрицательно заряженному атому кислорода, атакует атом углерода, который в этот момент еще связан и с нуклеофильной, и с уходящей группами наконец, эта пара электронов замещает уходящую группу. Эта последняя стадия аналогична Е1 сЬ-отщеп л ению. [c.428]

    Реакция эфиров карбоновых кислот с реактивами Гриньяра — прекрасный метод получения третичных спиртов. Как и в реакции с альдегидами и кетонами (разд. 15.14), нуклеофильная (основная) алкильная или арильная группа реактива Гриньяра присоединяется к электронодефицитному атому углерода карбонильной группы. Дальнейшее элиминирование алкок-сигруппы привело бы к образованию кетона, и в некоторых особых случаях кетоны действительно образуются в этой реакции. Однако, как мы уже знаем, кетоны сами очень легко реагируют с реактивом Гриньяра, давая третичные спирты (разд. 15.15) в рассматриваемом случае также получаются продукты, соответствующие присоединению реактива Гриньяра к таким кетонам [c.649]

    Наиболее яасто встреяаюпщмся и препаративно интересным является такое нуклеофильное присоединение, в котором первонаяально образуется карбанион последний в последующих реакциях обычно присоединяет протон и реже — какие-нибудь другие катионы. Рассмотрим сначала характерные примеры препаративного применения реакций нуклеофильного присоединения, классифицируя их в соответствии с природой атакующего реагента. В этих реакциях происходит взаимодействие с донорами, содержащими в качестве нуклеофильного центра атом углерода, азота, кислорода, серы или галогена  [c.263]

    Комплексы никеля Ni(L )2 превращаются в активную форму под действием О2 лиганд контролирует региоселективпое присоединение О2 к нуклеофильному у-атому углерода одного из лигандов L . Последующее внедрение О2 в хелатный цикл за-верщается формированием гетеролигандных комплексов NUL X,(L o,),L2 = Me OO ) [9, 11]. [c.237]

    Для альдегидов и кегонов наиболее 1иличными. являются реак-тщи нуклеофильного присоединения по двогаой связи карбонила, причем атаке подвергается атом углерода. [c.73]

    Рассмотрим взаимодействие реактивов Гриньяра с нитрилами. Азот более электроотрицательный элемент, чем углерод, поэтому связь = N сильно поляризована. Так, дипольный момент этнламина 2H5NH2, в котором атом азота связан с атомом углерода ординарной связью, равен 1,38 Д. а у ацетонитрила H3 N он равен 3,94 Д. Поэтому при взаимодействии нитрилов с магнийорганическими соединениями в первую очередь происходит реакция нуклеофильного присоединения  [c.297]

    Механизм реакции Кляйк на напоминает как реакции альдольного присоединения, так и нуклеофильные реакции производных кислот. Первая стадия ( ) представляет собой образование аниона этилацетата, который, являясь чрезвычайно сильным нуклеофилом, атакует карбонильный атом углерода второй молекулы сложного эфира (2). Элиминирование этилат-нона приводит далее к эфиру р-кетокислоты, этилацетоацетату (3). [c.232]

    Для альдегидов и кетонов наиболее типичными являются реакции нуклеофильного присоединения по двойной связи карбоншш, причем атаке подвергается атом углерода. [c.73]

    Протонирование енолят-иона идет в основном по кислороду, так как этот атом более отрицателен, чем атом углерода, что приводит к енолу 9, который таутомеризуется. Поэтому, хотя общий результат реакции — это присоединение к двойной угле-род-углеродной связи, механизм на самом деле представляет собой нуклеофильное 1,4-присоединение к системе С = С—С = 0 (пли аналогичной системе) и поэтому очень похож на меха низм присоединения к двойной углерод-кислородной или другим сходным связям (см, гл. 16). Когда Z иредставляет собой группу СЫ или С = 0, то У- может атаковать и этот атом углерода, и такая реакция иногда конкурирует с основной. Этот процесс называется 1,2-присоединением. 1,4-Присоединение к этим субстратам известно также под названием сопряженного присоединения. Ион У- никогда не атакует положение 3, поскольку получающийся карбанион не может быть резонансно-стабилизирован  [c.141]


    Направление атаки в нуклеофильном присоединении исследовано очень мало, кроме случая реакций присоединения по Михаэлю к соединениям типа С = С—Z. Здесь отрицательно заряженная часть реагента всегда региоселективно атакует атом углерода двойной связи, более удаленной от Z (см. разд. 15.2). [c.153]

    С субстратами, более подверженными атаке нуклеофилов, например полигалогеноолефинами и олефинами типа С = С—Z, лучше проводить реакцию в щелочном растворе, где атакующей частицей является R0- [147]. Реакции с субстратами типа С = С—Z относятся к реакциям присоединения по Михаэлю, и группа 0R всегда присоединяется к атому углерода, более удаленному от группы Z. Поскольку тройные связи более чувствительны к нуклеофильной атаке, чем двойные, то можно ожидать, что основания будут катализировать реакции присоединения к тройным связям особенно эффективно. Так оно и есть на самом деле, и эта реакция применяется для синтеза простых эфиров енолов и ацеталей [148]  [c.167]

    Нуклеофильный реагент присоединяется в I -положение, т. е. к атому углерода, удаленному от альдегидной группы. Такое присоединение карбаниона к активированной связи С —С называется реакцией Михаэля, причем связь может быть активирована не только карбонильной группой, но и, например, ал-коксикарбонильной группой ( OOR). Реакция Михаэля имеет большое значение в органическом синтезе. [c.161]

    В комплексе с катализатором может происходить существенное перераспределение электронной плотности в молекуле субстрата, приводящее к изменению его реакционной способности. Например, присоединение к субстрату протона или образобание субстратом координационной связи с ионом металла повышает электро-фильность субстрата, делая возможным взаимодействие его с относительно слабыми нуклеофильными реагентами. Так, ионы являются эффективными катализаторами гидролиза эфиров аминокислот. Это прежде всего связано с тем, что последние образуют хелатный комплекс с ионом Си +, в котором положительный заряд иона поляризует связь С=0 и облегчает нуклеофильную атаку молекулы воды на электрофильный атом углерода  [c.322]

    Отрицательный заряд распределяется в переходном состоянии в направлении от гидроксила к брому атомы водорода, присоединенные к атакуемому атому углерода, проходят при этом через состояние, в котором все они расположены в одной плоскости, перпендикулярно плоскости рисунка (планарное расположение). Механизм этого типа Ингольд назвал бимолекулярным нуклеофильным замещением и предложил обозначать его символом 5дг2. [c.93]

    По аналогии со связью >-С=С< можно ожидать, что связь >С —О может принимать участие в реакциях присоединения, однако если полярная атака >С=С < связи осуществляется почти исключительно электрофильными реагентами (см. стр. 176), то в случае связи С==0 атака может начинаться,очевидно, либо нуклеофилами (У или V ) по атому углерода, либо элекгрофила-ми (Х+ или X) по атому кислорода. Практически оказалось, чга первичная электрофильная атака атома кислорода происходит редко исключением является атака протонами (а также кислотами Льюиса), когда быстрое и обратимое протонирование предшествует, как правило, более медленной заключительной нуклеофильной атаке атома углерода, лимитирующей скорость, присоединения. Ясно, что протонирование должно повысить способность карбонильного углерода подвергаться нуклеофильной атаке [c.198]

    Если при присоединении Вг+ к алкену образуется ион брононня, то легко объяснить анти-направление реакции. Нуклеофильное раскрытие цикла с помощью бромид-нона должно происходить с противоположной стороны по атому углерода, с разрывом одной из связей С Вг, что ведет к аягм-прИсоединению  [c.246]

    Легкую замену азотсодержащей группировки в боковой цепи в солях грамина объясняют ионизацией связи между атомами азота и углерода, что приводит к образованию в высшей стапени реа.к-ционноспособного р-метилениндоленина или индолениния. Ионизованный сопряженный имин или ионизованное иммониевое соединение чрезвычайно активно вступают в реакции нуклеофильного присоединения по концевому углеродному атому, приводящие в итоге к замещению аминогруппы нуклеофилом. [c.305]

    В молекуле SAM сульфониевый атом серы сильно поляризует связи с углеродными атомами, делая их достаточно электрофильными, что разрешает нуклеофильную атаку на углерод метильной группы по механизму S 2. В итоге реализуется процесс присоединения метильной группы к атакующему нуклеофилу, а в свободном виде высвобождается 8-аденозил-гомоцистеин, который последующими превращениями регенерируется в SAM. Таким способом in vivo метилируются спирты, амины, олефиновые связи и т.д. [c.286]

    Нуклеофильный агент (С1, Вг и др.) ирисоеднияются га/ (Знс-стереоспецифично к тиирениевому иону в результате атаки в илоскости цикла со стороны, противоположной атому серы. Атака хлорид-иона на фенилзамещенный атом углерода нри присоединении по Марковникову возможна только тогда, когда тнирениеый трехчленный цикл и бензольное кольцо расположены ортогонально  [c.524]

    Следует отметить, что и при нуклеофильной атаке открытого карбокатиона, и при атаке несимметричного мостикового иона получается продукт, в котором нуклеофил присоединен к центральному атому углерода в пропене. Например, в то время как бром реагирует с пропеном с образованием циклического иона бромония или открытого карбокатиона, атака нуклеофилом (например, С1 ) будет происходить по С2 чаще, чем по С1. [c.316]

    НУКЛЕОФИЛЬНОЕ ПРИСОЕДИНЕНИЕ. Присоединяясь к ненасыщенному карбонилыюму соединению (енону), нуклеофил может атаковать атом углерода карбонильной группы или удаленный конец сопряженной системы. [c.41]

    Вообще говоря, 3,4,5,6-тетрагидропиридинам и 1-пирролинам свойственна преимущественно иминоформа, а не таутомерная енаминовая форма, тогда как их Ы-алкилпроизводные существуют только в форме енаминов. По сравнению с соответствующими ациклическими иминами = N- вязь в этих двух гетероциклах ока зывается более прочной в реакциях гидролитического расщепления, но в реакции нуклеофильного присоединения к азометиновому атому углерода они вступают очень легко. Так, 3,4,5,6-тетрагидро-лиридин и 1-пирролин образуют тримеры за счет нуклеофильного [c.368]

    Нуклеофильная атака метильной или другой алкильной группы протекает легко только в том случае, если атом углерода присоединен к какому-либо атому, несущему положительный заряд, например [c.93]

    Реакция. Нуклеофильное присоединение металлированного эфира а-изоцианалканкарбоновой кислоты по карбонильной группе с последующей циклизацией в 4-металлированный эфир оксазолинкарбоновой кислоты. При этом спиртовой кислородный атом связывается с электронодефицитным атомом углерода изонитрильной группы. Протонирование растворителем дает 2-оксазолин. Цианид натрия используется как основание. [c.559]

    Нуклеофильная атака по атому углерода плоской ацильной группы протекает с образованием относительно пространственно незатрудненного переходного состояния, приводящего к относительно устойчивому тетраэдрическому интермедиату поскольку карбонильная группа ненасьпцена, то присоединение нуклеофила требует только разрыва слабой я-связи, и в результате отрицательный заряд появляется на атоме, вполне склонном его приобрести, на атоме кислорода. [c.634]

    Нуклеофильная атака по тригональному атому углерода ацильной группы (разд. 20.4) относительно незатруднена она включает стадию временного присоединения четвертой группы — нуклеофильного реагента. Нуклеофильная атака по тетраэдрическому атому серы сульфогруппы более затруднена, поскольку она включает стадию временного присоединения пятой группы. Тетраэдрический атом углерода ацильного интермедиата образуется с использованием разрешенного октета электронов хотя сера способна использовать в образовании ковалентных связей более восьми электронов, подобная конфигурация менее устойчива, чем октет. Следовательно, пространственные и электронные факторы действуют так, что суль-фосоединения оказываются менее активными, чем ацильные производные. [c.680]

    Подобно альдольной конденсации и родственным реакциям (разд. 27.6 и 27.П), конденсация Клайзена включает стадию нуклеофильной атаки карбаниона по электронодефицитному атому углерода карбонильной группы. В альдольной конденсации нуклеофильная атака приводит к присоединению — типичной реакции альдегидов и кетонов в конденсации Клайзена нуклеофильная атака приводит к замещгнию — типичной реакции ацильных производных (разд. 20.4). [c.887]

    Изучение реакции фенилацетата с метоксид-ионом в газовой фазе показало, что присоединение даже одной молекулы растворителя к нуклеофильному агенту может резко изменять направление реакции [671, 672]. Известно, что щелочной гидролиз сложных эфиров в растворах протекает путем атаки нуклеофильного агента на карбонильный атом углерода (в результате чего образуется тетраэдрическое промежуточное соединение) с последующим расщеплением связи ацил— кислород (механизм Вас2) см. реакцию (5.138а). [c.351]

    Действительно, комплексы несопряженных диенов с палладием или платиной способны реагировать с различными нуклеофильными агентами. При этом происходит присоединение (преимуи1ест-вснно транс-) к одной нз двух имеющихся в молекуле двойных связей, в результате которого один из атомов углерода образует сг-связь с нуклеофилом, а другой — с металлом. Процесс осуществляется путем непосредственной ат аки на катионоидиый атом углерода, а не путем предварительного связывания нуклеофила с металлом последующей миграцией его к двойной связи (схема 247) (см. также разд. 15.6.2.1, 15.6.3.2). [c.311]


Смотреть страницы где упоминается термин Нуклеофильное присоединение к атомам углерода: [c.116]    [c.143]    [c.173]    [c.54]    [c.333]    [c.382]    [c.110]    [c.13]    [c.300]    [c.411]    [c.1289]    [c.32]   
Смотреть главы в:

Курс теоретических основ органической химии -> Нуклеофильное присоединение к атомам углерода




ПОИСК





Смотрите так же термины и статьи:

Присоединение нуклеофильное

Присоединение нуклеофильное Нуклеофильное присоединение



© 2025 chem21.info Реклама на сайте