Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения трехвалентных сурьмы и висмута

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]


    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    Амфотерные свойства соединений трехвалентных мышьяка, сурьмы и висмута [c.130]

    Изучена пестицидная активность различных соединений сурьмы и висмута [12—14]. Аналогично соединениям мышьяка наиболее высокой микробиологической активностью обладают соединения трехвалентных сурьмы и висмута. Соединения этих элементов в высшей валентности менее активны. [c.494]

    ЗЛ. Соединения трехвалентных сурьмы и висмута [c.141]

    Бесцветный комплексонат висмута имеет максимум свето-поглощения в ультрафиолетовой области при длине волны 263,5 устойчивый в пределах pH 2—9. Состав его отвечает простому комплексному соединению с соотношением висмута с комплексоном, равным 1 1. Уэст и Кол [20] разработали простой метод спектрофотометрического определения висмута, основанный на измерении светопоглощеиия комплексоната висмута в кислых или забуференных ацетатом натрия растворах. Лучше производить определение в кислых растворах с pH 1, так как в этих условиях мешает наименьшее число элементов. Из анионов мешают главным образом нитраты. Сульфаты, перхлораты, хлориды и ацетаты практически не влияют. Могут мешать только хлориды, если они находятся в большой концентрации вследствие образования хлорокомплексов. Не мешает большинство бесцветных катионов. При pH 1 висмут можно определять в присутствии равного количества трехвалентной сурьмы и двухвалентного олова. Медь и железо не должны содержаться в растворе. В кислом растворе не мешают определению небольшие количества марганца, никеля и кобальта. В присутствии свинца, бария или стронция измерения следует проводить в растворе хлорной кислоты. Большие количества свинца (В1 РЬ = 1 50) следует предварительно выделять в виде сульфата свинца центрифугированием. При значительных концентрациях свинца висмут адсорбируется осадком сульфата свинца. [c.194]


    Переходные металлы образуют комплексы с самыми разнообразными соединениями трехвалентного фосфора, мышьяка и, в меньшей степени, сурьмы и висмута в эту же категорию можно включить производные RjS. Некоторые примеры подобного рода приведены в табл. 27.4. Указанные донорные молекулы, естественно, являются сильными кислотами Льюиса и могут образовывать комплексы с такими акцепторами, как BRg, в которых нет ( -орбиталей. Однако у атомов донора имеются пустые л-орбитали, благодаря чему за счет акцептирования электронов этими орбиталями становится возможным дативное взаимодействие, как показано на рис. 27.10. [c.142]

    Галогены при нагревании реагируют с металлическим висмутом, образуя соответствующие тригалогениды. Сплавляя металлический висмут с серой, селеном или теллуром, получают соответствующие соединения трехвалентного висмута. Сурьма и мышьяк смешиваются с висмутом в любых отношениях. [c.513]

    Растворы соединений других элементов взаимодействуют со всеми производными дитиофосфорной кислоты следующим образом. Белый осадок вольфрамовой кислоты, образующийся при добавлении соляной кислоты к раствору вольфрамата натрия, медленно восстанавливается всеми реагентами до вольфрамовой сини, а желтый солянокислый раствор ванадата аммония довольно быстро переходит в зеленый. Соли уранила и титана не дают реакций окрашивания. Серебро, двухвалентная ртуть, свинец, одновалентный таллий, кадмий, мышьяк выделяются в виде белых, а висмут и олово — желтых аморфных осадков. Сурьма образует осадки желтого или слабо-желтого цвета. Одновалентная ртуть и трехвалентное железо дают черные, а медь желто-зеленые осадки. Соли никеля образуют муть сиреневого цвета, растворимую в этиловом эфире с образованием красно-фиолетового раствора. Соли кобальта образуют соединения грязно-оранжевого цвета, растворимые в эфире с образованием оранжевого раствора. Соли многих других элементов не дают осадков или окрашивания. Таким образом, большинство изученных производных дитиофосфорной кислоты можно считать селективными реагентами на молибден, поскольку при определенных условиях они образуют с молибденом характерное малиновое или красное окрашивание. [c.79]

    Из соединений трехвалентного мышьяка практически наиболее важен мышьяковистый ангидрид, являющийся основным исходным продуктом для получения остальных производных Аз. Непосредственно он применяется в стекольной промышленности (для обесцвечивания стекла), как консервирующее средство (в меховой промышленности и т. д.) и в медицине. Небольшие количества АзгОз благотворно действуют на организм человека и животных (а по некоторым данным — и растений). Установлено, что добавление АзгОз в корм скоту заметно повышает его рост и работоспособность. Окись сурьмы (ЗЬгОа) применяется для получения различных эмалей и глазурей, окись висмута — при производстве хрусталя. Из солей наибольшее значение имеет основная азотнокислая соль висмутила приблизительного состава В 0(Ы0з) ВЮ(ОН), используемая в медицине при желудочных заболеваниях. Соль эта применяется также в косметической промышленности и при изготовлении красок для живописи. [c.472]

    Важной группой методов синтеза ароматических соединений ртути является замена на ртуть остатков кислот борной в арил(алкил)борных кислотах, сернистой в сульфиновых кислотах, йодноватой в иодосоедине-ниях и карбоксила в карбоновых. кислотах. Реакции эти, имеющие главную область применения в ароматическом ряду, в случае остатков СООН, В(0Н)2, SOgH применимы и к синтезу алифатических соединений ртути. Замена на ртуть атомов тяжелых металлов — олова, свинца, висмута, таллия, кадмия, кремния, трехвалентных сурьмы и мышьяка — в их арильных (частью в алкильных и алкенильных) соединениях также может служить для целей синтеза ароматических и жирных (предельных и непредельных) соединений ртути. [c.197]

    С раствором сульфата висмута реакция не удается. Открытию висмута мешают мышьяк, сурьма, олово, трехвалентное железо и марганец. Небольшие количества кадмия не метают. При открытии висмута в присутствии меди получившийся темнобурый раствор (от соединения меди с диметилглиоксимом) нужно профильтровать и осадок промыть водой. [c.178]

    При работе с хлорной кислотой нужно избегать соприкосновения кипящей концентрированной кислоты или ее парез с органическими или легко окисляющимися неорганическими веществами, вроде соединений трехвалентной сурьмы, а также с металлическим висмутом.  [c.89]

    Висмут образует комплексное соединение с комплексоном еще при pH 1—2, в то время как большинство остальных комплексонатов находится при этом pH в диссоциированном состоянии. Ввиду того, что висмут сам восстанавливается на ртутной капле в начале полярографического спектра, здесь приведены условия для его селективного определения, которому мешает только присутствие ртути, серебра, сурьмы, олова и трехвалентного же- [c.390]


    Препятствующие анализу вещества. Большие количества хлоридов, связывающих сурьму в комплекс, мешают определению. Висмут, свинец, ртуть, серебро, а также большие количества олова и мышьяка, дающие нерастворимые осадки и растворимые окрашенные комплексы с иодидом, также мешают определению. Окислители, в том числе и трехвалентное железо, выделяющие иод, тоже препятствуют определению. Большие количества пиридина приводят к нейтрализации раствора и разрушают окрашенный комплекс. Сульфит в больших количествах мешает определению, так как образует с иодидом соединение, окрашенное в слабожелтый цвет. Концентрация иодида при определении должна составить около I % (в конечном объеме). Оптимальная кислотность соответствует 7 н. раствору серной кислоты. [c.219]

    Разделение триэтаноламином N (СН2СН20Н)з. Триэтанол-амин образует с кобальтом растворимое комплексное соединение карминово-фиолетового цвета, соли никеля и меди дают растворы, окрашенные в синий цвет. Катионы ртути (1), свинца, серебра, кадмия, ртути (II), висмута, олова, железа, алю.миния, хро.ма и цинка образуют осадки различного цвета. Триэтанол-амин применяется для качественного обнаружения кобальта [747, 868], для разделения кобальта и никеля [1224], отделения железа от кобальта и никеля [954] и как групповой реагент в качественно.м анализе [276]. В последне.м случае при прибавлении 20%-ного раствора триэтаноламина к растворам, содержащим катионы алюминия, марганца, цинка, висмута, олова (II), сурьмы и железа(II), образуются осадки, нерастворимые в избытке триэтаноламина, а катионы трехвалентного хро.ма,. меди, кобальта и никеля образуют окрашенные растворимые соединения катионы ртути, свинца и четырехвалентного олова в этих условиях дают бесцветные растворимые комплексы. [c.71]

    В большинстве устойчивых соединений сурьма и висмут трехвалентны. Для соединений сурьмы и висмута характерна тенденция к образованию вследствие гидролиза трудно растворимых основных солей. По этой же причине трехвалентные катионы сурьмы ЗЬ и висмута В существуют только в сильно кислых растворах. [c.472]

    Установлена возможность разделения платины и кобальта с использованием в качестве электролитов растворов хлорида калня, хлорида аммония, соляной кислоты, роданида калия и винной кислоты [1111]. Разделены электрофоретически смеси мышьяк — висмут — кобальт, мышьяк — кадмий — кобальт, мышьяк — свинец — кобальт с электролитом — 0,1 N раствором цитрата натрия и смеси сурьма — серебро — кобальт и сурьма — мышьяк—кобальт с фосфорной кислотой в качестве электролита [1110]. Изучалась электрофоретическая подвижность катионов серебра, свинца, ртути, висмута, кадмия, меди, железа, марганца, никеля и кобальта на бумаге в растворах нитрата калия различной концентрации [1073]. Исследовалось разделение различных комплексных соединений трехвалентного кобальта методом электрохроматографии [1026] и другими методами [1112]. [c.84]

    В последние годы наряду с соединениями мышьяка изучена пестицидная активность органических соединений сурьмы, висмута, железа и бора. Аналогично соединения. 1 мышьяка наиболее высокой микробиологической активностью обладают соединения трехвалентной сурьмы и висмута. [c.597]

    Соединения трехвалентной сурьмы и висмута образуются и при термическом разложении пятивалентных соединений этих металлов. [c.6]

    По данным классической полярографии и осциллополярографии хорошо выраженные волны дают во многих органических растворителях ионы трехвалентных сурьмы и висмута [892, 1153, 722, 1052, 904, 1123, 1066, 146, 1047, 785]. Процесс восстановления в основном изучен на галогенидных солях. Наблюдалось как одноступенчатое [1052, 1128, 785, 226], так и многоступенчатое [722, 146] восстановление до металла. Потенциалы выделения, как правило, более положительны, чем в водных растворах, что свидетельствует о низкой энергии сольватации ионов в соединениях Sb(III) и Bi(III) в органических средах. В случае двухступенчатого разряда ионов соединения Sb(III) медленной ступенью служит первая ступень присоединения двух электронов [146]. Для обоих металлов процесс электровосстановления имеет преимуще-ственно диффузионный характер. В результате исследования электрохимического поведения иона Bi(III) в спиртовых и водноспиртовых растворах отмечено нарушение пропорциональности между концентрацией Bi la и величиной предельного тока [1123]. [c.95]

    Соединения трехвалентных фосфора,. мышьяка, сурьмы и висмута, а также двухвалентной серы и селена могут образовывать комплексы с переходными металлами. Эти доноры, конечно, являются довольно сильными основаниями Льюиса и образуют комплексы с льюисовыми кислотами типа ВКз, при возникновении которых не участвуют -орбитали. Однако донорные атомы имеют вакантные 4п-орбташ, способные участвовать в образовании датишых связей, как это показано на рис. 28.7. [c.569]

    Реагенты рассматриваемого типа дают устойчивые комплексы со многими другими металлами, что использовано для фотометрического определения последних. Экстракция в этих случаях детально не изучалась, хотя очевидно, что соединения должны экстрагироваться. Можно указать работы по изучению комплексообразова- ния дитиопирилметана с таллием (III) [126 ], мышьяком(П1) и (V) [127], сурьмой(П1) и (V) [128, 129], висмутом [130, 131], золотом [132]. Пятивалентные мышьяк и сурьма прн взаимодействии восстанавливаются до трехвалентных. Комплекс висмута с дитиопирилметаном экстрагировали и фотометрически определяли висмут в экстракте [133 J. [c.32]

    Реакция окиси ртути с ароматическими металлоорганическими соединениями олова [95, 961 (также алкенильными соединениями олова [106, 1071), свинца [95], трехвалентной сурьмы [951, трехвалентного мышьяка [95, 136, 137], висмута [124], проводимая при кипячении в водно-спиртовой щелочной среде, приводит неизменно к диарил(диалкенил)ртути. Реакция в тех же условиях, с теми же соединениями алкил- или арилмер-кургидроксида (практически применяют хлористую алкил- или арилртуть в присутствии щелочи) ведет к несимметричным ртутноорганическим соединениям (см. гл. XII, стр. 231). [c.209]

    Метиленглутародинитрил образуется при нагревании (от 50 до 190 °С) акрилонитрила под давлением с небольшим количеством гидрохинона или в присутствии соединений трехвалентного фосфора. В качестве катализатора можно также использовать хлориды рутения , карбонилы кобальта и органические производные сурьмы и висмута . Эта реакция не представляет интереса для синтеза адиподинитрила. Однако при димеризации акрилонитрила в присутствии указанных катализаторов всегда получается небольшое количество линейного димера 1,4-дицианобутена-1, гидрированием которого можно получить адиподинитрил (см. стр. 125). [c.73]

    Как полные, так и смешанные ароматические металлоорганические соединения кадлшя, таллия, олова,свинца,трехвалентной сурьмы,ароматические, и алифатические соединения висмута уже на холоду и очень быстро при кипячении в спиртовом растворе (для первых двух в эфирном) с сулемой образуют хлористую фенилртуть, частично, а при достаточном количестве сулемы сполна отдавая ртути свой арил [c.90]

    Реакция окиси ртути с ароматическими металлоорганическими соедине-ннялш таллия, олова,свинца,трехвалентной сурьмы,трехвалентного мышьяка.висмута, проводимая при кипячении в водно-спиртовой щелочной среде, приводит неизменно к диарилртути. Реакция в тех же условиях с теми же соединениями алкил- или арилмеркургидроксида (практически применяют хлористую алкил- или арилртуть в присутствии щелочи) ведет к несимметрическим ртутноорганическим соединениям (см. главу 12, стр. 94). [c.90]

    Взаимодействие с элементарными веществами. Со всеми галогенами сурьма и висмут энергично взаимодействуют с образованием тригалидов, а при избытке фтора или хлора сурьма образует соответствующие пентагалиды. На воздухе при обычных температурах сурьма и висмут вполне устойчивы. При температуре порядка 600° С они сгорают с образованием соответствующих оксидов типа МегОз. При сплавлении с серой, селеном и теллуром образуются соответствующие соединения, в которых сурьма и висмут трехвалентны. С азотом сурьма и висмут не взаимодействуют. С большинством металлов сурьма и висмут дают сплавы, причем определенные соединения образуются преимущественно с активными металлами (а сурьма и с такими металлами, как никель, серебро, олово). [c.209]

    Сурьма в количестве 0,1% и выше мешает определению, так как она, подобно висмуту, образует, хотя и слабо, но огфатен-ное в желтый цвет соединение с тиомочевиной. Опыты показали, что прибавление избытка винной кислоты для связывания сурьмы в бесцветный комплекс повышает точность определения висмута 0,05 и 0,01% сурьмы практически ие влияют на определение висмута. Трехвалентное железо мешает опре- [c.127]

    Висмут образует комплексное соединение с комплексоном еще р1Г Т1 Г—в то врШ5Гтк большинство ос натов находится нри этом pH в диссоциированном состоянии. Ввиду того, что висмут сам восстанавливается на ртутной капле в начале полярографического спектра, здесь приведены условия для его селективного определения, которому мешает только присутствие ртути, серебра, сурьмы, олова и трехвалентного железа. Последние три катиона можно, однако, замаскировать винной или лимонной кислотой. Свинец не мешает, даже если он находится в очень большом количестве. Поэтому этот метод применяется для определения следов висмута в свинце. [c.86]


Смотреть страницы где упоминается термин Соединения трехвалентных сурьмы и висмута: [c.657]    [c.223]    [c.152]    [c.657]    [c.455]    [c.209]    [c.73]    [c.54]    [c.285]    [c.359]    [c.282]    [c.500]    [c.352]    [c.567]    [c.236]   
Смотреть главы в:

Кристаллохимия Том 12 -> Соединения трехвалентных сурьмы и висмута




ПОИСК





Смотрите так же термины и статьи:

Висмута соединения

Сурьма соединення

Сурьмы соединения



© 2025 chem21.info Реклама на сайте