Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитический ток ионов водорода

    Еще Оствальд заметил, что для этой и аналогичных реак-ций между каталитической активностью системы и ее электропроводностью имеется однозначная связь. Аррениус подтвердил это и, кроме того, обнаружил, что во-первых, при добавлении к катализирующей реакцию кислоте ее соли, что согласно классической теории электролитической диссоциации должно умень-шить концентрацию ионов водорода, каталитический эффект не только не уменьшается, но в некоторых случаях даже возрастает (например, при этерификации трихлоруксусной кислоты). З то явление получило название вторичного солевого эффекта. Так как при добавлении к раствору кислоты ее соли увеличивается концентрация анионов и недиссоциированной кислоты, то из наличия солевого эффекта следует, что и недис-социированная кислота, и ее анионы обладают каталитической активностью. [c.287]


    Определения кислоты как вещества, способного отщеплять ионы водорода (гидроксония), и основания как вещества, способного отщеплять ионы гидроксила, достаточно хорошо отражают наблюдаемые явления, пока мы имеем дело с водными растворами. В других растворителях, например в эфире, бензоле, нитросоединениях, указанные определения уже нельзя считать точными. На основании исследований, относящихся преимущественно к каталитическому действию кислот и оснований, Бренстед и Лоури предложили новые определения кислотой называется вещество, способное отда- [c.468]

    Скорость реакции в присутствии катализатора составляет k [СО2] [ at], причем — константа, характерная для данного катализатора и зависящая от температуры, а [ at] — концентрация каталитической добавки. Реакция имеет, таким образом, первый порядок. В присутствии иона или молекулы, которая будет реагировать с ионом водорода, образующимся по реакции (Х,2), катализированная гидратация будет продолжаться вплоть до достижения равновесия. Так, в присутствии ионов карбоната (и при условии незначительного равновесного давления СОа над раствором) вслед за реакцией [c.243]

    Кислотно-основными, или ионными, называются такие каталитические реакции, которые объясняются присоединением или отщеплением иона водорода (протона), а также реакции, при которых свободная пара электронов у реагирующих веществ или катализатора перемещается без разобщения электронов, образуя координационную связь в комплексном соединении. Отметим здесь же, что согласно теории Льюиса, кислотами называются соединения, молекулы которых способны присоединять электронную пару, т. е, включать ее в электронную оболочку одного из своих атомов. [c.215]

    Активным катализатором может быть и ион водорода. Отклонения в каталитической силе кислот в зависимости от изменения их концентрации, различную скорость гидролиза сложных эфиров слабыми и сильными кислотами, действие нейтральных соединений (солевой эффект) и т. д. следует приписать образованию промежуточных соединений. [c.547]

    На скорость гомогенных реакций, протекающих в жидкой фазе, оказывают существенное влияние ионы водорода и ионы гидроксила (кислотно-основной катализ). При наличии в растворе только одной кислоты или одного основания константа скорости реакции, протекающей в растворе, прямо пропорциональна концентрации ионов водорода или ионов гидроксила /С = 7Сн+[Н+] /(=/(он 10Н-], где /Сн+ и — каталитические константы водородного и гидроксильного ионов. В этих случаях наиболее вероятен ионный механизм каталитического действия. [c.31]


    В реакциях (I) и (1а) могут участвовать не только ионы Н3О+, но и другие доноры протонов, например молекулы органических кислот и т. п. Вещество В, которое образуется на стадии (И1), или остается в адсорбированном состоянии, или десорбируется в раствор. В стадии разряда (И) участвует частица ВН дс. Эта частица должна восстанавливаться с более высокой скоростью, чем ионы гидроксония, так как, во-первых, она является поверхностно-активной (go>0), а во-вторых, энергия адсорбции продукта реакции ВН д или В больше, чем энергия адсорбции атомов водорода на поверхности ртути. Оба эти фактора согласно теории замедленного разряда приводят к ускорению реакции. В некоторых случаях перенос электрона на частицу ВН дс происходит настолько быстро, что скорость каталитического выделения водорода лимитируется стадией (I). Уравнение полярографической волны в условиях медленной протонизации в буферных растворах имеет вид [c.379]

    Параллелизм между каталитическим действием кислот и их электропроводностью. Чем больше электропроводность кислоты при данной концентрации, тем более сильный каталитический эффект она оказывает на процесс гидролиза сложных эфиров. Этот параллелизм нельзя было объяснить с точки зрения теории Фарадея, поскольку, согласно этой теории, электропроводность связана с возникновением ионов под действием электрического поля, тогда как гидролиз эфиров исследуется в отсутствие поля. С другой стороны, при допущении о самопроизвольной диссоциации кислот и электропроводность раствора кислоты, и ее каталитическое действие можно связать с одним общим фактором — концентрацией ионов водорода. [c.9]

    Еще в конце XIX в. было установлено влияние добавок кислот и оснований на скорость реакций в водных растворах. Это привело к заключению, что ионы водорода н гидроксила отличаются каталитическими свойствами. Дальнейшие исследования показали, что каталитическая активность кислот и оснований сохраняется и в неводных растворах, где электролитическая диссоциация весьма слаба. [c.408]

    Гидратация изобутилена на катионитах — пример специфического кислотного катализа, когда каталитический процесс осуществляется сольватированным ионом водорода. Реакция первого порядка по ионам водорода и первого порядка по олефину. Скорость процесса дегидратации триметилкарбинола на катионите описывается уравнением Фроста  [c.222]

    Одним из наиболее важных доказательств соответствия модели Аррениуса с опытом оказались каталитические свойства кислот. То что кислоты обладают каталитическими свойствами, было найдено давно, но только теория электролитической диссоциации связала эти свойства с концентрацией ионов водорода. Вследствие большей подвижности ионов водорода по сравнению с подвижностью различных анионов изменение электропроводности раствора должно быть аналогичным изменению каталитической активности раствора, если действительно ион водорода является причиной каталитических свойств. Один из наиболее выдающихся примеров такого соответствия, найденный Гольдшмидтом, показан в табл. 9-1, в которой сравниваются относительная электропроводность и каталитическое действие ряда кислот в безводном этаноле. [c.327]

    В химии долгое время придерживались взгляда, согласно которому кислотные свойства раствора должны быть связаны с присутствием в нем ионов водорода. Ионы водорода обусловливают определенную окраску индикаторов, эти же ионы вызывают и ряд каталитических эффектов, в частности ускоряют процессы гидролиза, мутаротации глюкозы и др. Однако в дальнейшем было выяснено, что каталитические свойства присущи не только ионам водорода, но и молекулам кислот, иону гидроксила и даже молекуле воды. [c.247]

    Минеральные кислоты значительно увеличивают скорость гидролиза сложных эфиров образуемые ими ионы водорода являются в этой реакции катализаторами. Еще быстрее сложные эфиры гидролизуются под влиянием щелочей, благодаря каталитическому действию гидроксильных ионов кроме того, щелочи нейтрализуют образующуюся из эфира кислоту и тем самым способствуют течению реакции. Продуктами щелочного гидролиза сложных эфиров являются спирт и соль кислоты [c.181]

    Скорость этерификации увеличивается при нагревании и особенно в присутствии минеральных кислот благодаря каталитическому действию ионов водорода. Обычно в качестве катализатора применяют серную кислоту (В. В. Марковников, 1873). [c.182]

    Обратимый водородный потенциал устанавливается иа металлах, способных каталитически активировать водород. Каталитическая активация водорода металлами — это способность металлов ионизировать часть адсорбированного водорода. Металлы, ионизирующие водород, осуществляют и обратный процесс — атомизацию ионов водорода. [c.186]


    Реакции иохш карбония, протекающие при каталитическом крекинге, согласно Томасу заключаются в переносе водорода, при котором олефины могут частично превращаться в парафины без добавления водорода извне. Первая стадия состоит во введении иона водорода в молекулу олефина  [c.89]

    Этерификация—процесс замещения иона водорода в органической кислоте алкильной или арильной группой. Водородный ион действует каталитически на реакцию. Применяются сильные кислоты или соли сильных кислот и слабых оснований. Хлористый цинк усиливает каталитическое действие кислот. Используются и другие катализаторы фториды бора и кремния хлориды алкминия, трехвалентного железа и магния металлы в тонко- [c.328]

    Как уже было сказано, наличие вторичного солевого эффекта заставляет признать, что каталитическую активность проявляют также анионы кислоты и недиссоциированные молекулы кислоты. Эти факты были использованы в так называемой дуалистической теории катализа (Даусон, 1906). Согласно этой теории, при расчете скорости каталитического процесса необходимо учитывать, что каталитически активными являются ионы водорода и гидроксила, анионы, молекулы недиссоциироваиных кислот и оснований и недиссоциированные молекулы воды. Поэтому скорость реакции при данной концентрации реагирующего вещества равна сумме скоростей, обусловленных активностью всех катализирующих частиц. [c.288]

    Кроме величины поляризации на скорость электродных процесс сов влияют некоторые другие факторы. Рассмотрим катодное восстановление ионов водорода. Если катод изготовлен нз платины, то для выделения водорода с заданной скоростью необходима определенная величииа катодной поляризации. Прп замене платинового электрода на серебряный (при неизменных прочих условиях) для получения водорода с прежней скоростью понадобится большая поляризация. При замене катода на свинцовый поляризация потребуется еще большая. Следовательно, различ)1ые металлы обладают различной каталитической активностью по отношению к процессу восстановления ионов водорода. Величина нс-ляризацни, необходимая для протекания данного электродного процесса с определенной скоростью, называется перенапря жением данного электродного процесса. Таким образом, нерс напряжение выделения водорода на различных металлах различно, [c.303]

    Авторы, объясняющие реакцию алкилироваиия, исходя из предположения об ионизации молекул изопарафина с разрывом связи С—Н, используют основные положения карбоний-ионного механизма каталитической полимеризации олефилов, разработанного Витмором с сотр. [7] и получившего в настоящее время широкое признание. В основе механизма каталитической полимеризации, предложенного Витмором, лежит электронная теория химического взаимодействия (реакций). Механизм реакции цепной. Первым звеном в этой цепи при контакте олефина с кислотным катализатором является образование исходного карбоний-иона путем присоединения иона водорода кислоты по двойной связи  [c.11]

    Некоторые исследователи (И. Тафель, Н. И. Кобозев и др.) иридерживаются в вопросе водородного перенапряжения иных взглядоь. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации,т. е. пятая стадия процесса. Эта теория водородного перенапряження, получившая название рекомбинационной, достаточно обоснована для некоторых металлов, в отношении которых наблюдается параллелизм между величиной перенапряжения на них водорода и каталитической их активностью но отношению реакции рекомбинации водородных атомов. [c.41]

    Ферменты отличаются высокой каталитической активностью, специфичностью и избирательностью. Например, одна молекула фермента уреэзы гидролизует карбамид в 10 раз быстрее, чем ион водорода, но не оказывает влияния на реакции гидролиза других амидов, хотя карбамид по реакционной способности мало отличается от других соединений с амидной связью. Э. Фишер образно сравнил взаимодействие фермента и субстрата с ключом и замком. Как ключ отпирает только определенный замок, так и фермент катализирует только определенную реакцию. [c.631]

    В отличие от свободных радикалов ионы карбония легко иэо-меризуются, о чем уже говорилось раньше. Вследствие этого бензин каталитического крекинга содержит много изопарафинов, имеющих более высокое октановое чггсло по сравнению с н-парафина-ми. Этот эффект еще более усиливается из-за повышенного содержания ароматических углеводородов, которые образуются за счет каталитического перераспределения водорода между молеку-ла 1н олефина и нафтена  [c.41]

    Особенностью ДКГ является повышенное содержание свободной серной кислоты и сульфокислот. Поэтому следует предполагать повышенную реакилонную способность в процессах катионной полиглериза-цсш и каталитических процессах с участием ионов водорода. Олигомерные смолы отличаются повышенным содержанием непредельных соединений - дненов и олефинов, примерно в 3,5 раза большим, чем в смоле пиролиза, что подтверждает высокие малеиновые и йодные числа O I и 0G2. Это подтверядают спектры ЯМР Н, где наделяются линии ароматических и оС-, jS-, j -протонов, кроме того, имеется поглощение в области 4-6 м.д., что указывает на существование [c.47]

    Особенностью ДКГ является повышенное содержание свобод ой серной кислоты и сульфокислот.Поэтому следует предполагать повышенную реакционную способность в процессах катионной полимеризации и каталитических процессах с участием ионов водорода. Олигомерные смолы отличаются повышенным содержанием непредельных соединений - диенов и олефинов,примерно в 3,5 разабольшим,чем в смоле пиролиза,что подтверждает высокие малеиновые и йодные числа Od и 0С2.Это подтверждают [c.143]

    Запишите выражение для скоровти v гомогенной каталитической реакции 1-го порядка по реагирующему веществу S для специфического кислотно-основного катализа при осуществлении его одновременно и ионами водорода, и гидроксила. Обозначения ко — константа скорости реакции без катализатора н+—константа скорости реакции в кислом растворе кон--константа скорости реакции в щелочном растворе. [c.83]

    И, наконец, укажем на одновременное проявление электростатических и гидрофобных эффектов в катализе гидрофобизованными полиэлектролитами. Так, полистиролсульфокислота обнаруживает повышенную каталитическую активность (по сравнению с мономером) в кислотнокатализируемой реакции гидролиза сложных эфиров алифатических кислот [72]. Механизм ускорения заключается, по-видимому, в следующем. Гидрофобное взаимодействие между углеводородными фрагментами молекулы сложного эфира и аполярными областями в полимерной частице обеспечивает концентрирование субстрата на полимере. Кроме того, необходимо также принять во внимание концентрирование ионов водорода в поверхностном слое полимерной частицы за счет их электростатического взаимодействия с отрицательным зарядом полимера. Этот эффект приводит к локальному понижению pH вблизи сорбированных реагентов и благоприятствует протеканию кислотнокатализируемой реакции. [c.106]

    На течение и ход гомогенных химических реакций большое влияние оказывает среда (опыт 36). При этом природа растворителя может значительно влиять на скорость реакций растворенных веществ, поскольку растворитель зачастую не только сам принимает активное участие в реакции, но и в ряде случаев оказывает каталитическое действие на протекающий химический процесс. Не меньщее влияние на скорость реакций в водных средах может оказывать наличие в воде ионов водорода и гидроксила (кислотность и щелочность среды). [c.85]

    Исследуя химические реакции, катализируемые слабыми кислотами, С. Аррениус обнаружил усиление каталитического эффекта при добавлении в раствор нейтральных солей, не содержащих одноименных с кислотой анионов. Это явление называется первичным солевым эффектом. В то же время он наблюдал, что добавление соли слабой кислоты, подавляющее диссоциацию и снижающее концентрацию ионов водорода, уменьшает скорость каталитического процесса существенно меньше, чем следовало из закона действия масс (вторичный солевой эффект). Для истолкования вторичного солевого эффекта предполагают, что каталитической активностью обладают не только ионы водорода (или гидроксила), но и анионы, молекулы недиссоциированных кислот (или оснований) и молекулы воды. Первичный солевой эффект был объяснен Я- Брёнстедом и Н. Бьеррумом. Используя уравнение Дебая — Гюккеля для коэффициента активности, они показали, что логарифм константы скорости к реакции между двумя ионами линейно зависит от корня квадратного из ионной силы раствора  [c.85]

    Присутствие в растворе некоторых органических веществ R, содержащих атомы азота, фосфора, серы, кислорода и некоторые другие, имеющие неподеленную пару электронов, может вызывать каталитическое выделение водорода при тех потенциалах, когда непосредственный разряд на электроде ионов гидроксония или других доноров протонов ВН+ еще невозможен (Р. Брдичка, Э. Кнаблох, С. Г. Майрановский). Упомянутые вещества способны присоединять протон, образуя ониевые соединения. Механизм процесса каталитического выделения водорода включает стадию протонирования органического вещества-катализатора и определяется последовательностью трех реакций, из которых только одна связана с переносом электрона  [c.258]

    Третий пример, который ставит под сомнение ценность классификации по Льюису, это каталитическая способность кислот Льюиса. Оказалось, что в некоторых случаях кажущееся каталитическое действие кислот Льюиса было вызвано загрязнениями, приводившими к образованию ионов водорода . И вообще, было установлено, что реакции, на которые оказывают каталитическое действие кислоты Льюиса, не катализируются протонными кислотами. Это надо учитывать, так как Льюис считал каталитическое действие одним из четырех критериев кислотного характера. Недавно были найдены реакции, в которых кислоты Льюиса служили лучшими катализаторами, чем протонные кислоты. Так, Белл и Скиннер проводили каталитическую деполимеризацию параль-дегида в эфире с помощью и кислот Льюиса, и протонных кислот. В общем кислоты Льюиса оказались лучшими катализаторами, чем протонные кислоты. Тем не менее Белл указывает, что эта реакция единственная в своем роде и что в ней требуется перераспределение электронов, а не перемещение атомов. Все же нет сомнения, что во многих реакциях кислоты Льюиса ведут себя как катализаторы. [c.335]

    Особый случай рассматриваемых реакций представляют авто-каталитические, например гидролиз этилацетата в водном растворе. Продукт реакции — уксусная кислота и ион водорода ускоряют реакцию. Скорость автокаталитнческой реакции вначале возрастает вследствие увеличения количества продукта, являющегося катализатором, а затем падает в результате израсходования исходных веществ. Причем если начальная концентрация катализатора и скорость некаталитической реакции малы, то реакция идет в, течение некоторого времени настолько медленно, что практи- [c.204]

    Скорость катодного выделения водорода возрастает с увеличением температуры и концентрации ионов водорода (снижения pH). На скорость этого процесса заметно влияет природа катодных участков. Некоторые металлы, например платина, кобальт, никель и др., катализируют выделение водорода и катодный процесс на них протекает с высокими скоростями. Поэтому, если в составе металла или сплава находятся металлы, катализирующие выделение водорода, то коророзия может ускоряться за счет этих компонентов в сплаве. Другие металлы, например ртуть, свинец, кадмий, цинк, не катализируют или слабо катализируют катодное выделение водорода, и катодный процесс на них протекает медленно. Поэтому присутствие в составе сплйва таких компонентов или не меняет скорости коррозии основного металла, или снижает ее из-за уменьшения площади поверхности, занимаемой основным металлом, на которой происходят и растворение металла и выделение водорода. Влияние природы металла на скорость выделения водорода количественно можно оценить по перенапряжению водорода на различных металлах (см. табл. УП.З). Чем ниже перенапряжение водорода, тем большей каталитической активностью к реакции выделения водорода обладает металл и тем выше скорость выделения водорода при данном потенциале катодного участка, а следовательно, и больше скорость коррозии. Чем выше перенапряжение, тем меньше и скорость выделения водорода при данном потенциале катодного участка, тем ниже скорость коррозии металла. Таким образом, скорость коррозии с выделением водорода может быть замедлена снижением температуры и уменьшением концентрации ионов Н+, очисткой металла от примесей, катализирующих выделение водорода, а также изоляцией поверхности металла. Перемешивание раствора практически не влияет на скорость выделения водорода. [c.233]


Смотреть страницы где упоминается термин Каталитический ток ионов водорода: [c.173]    [c.293]    [c.105]    [c.287]    [c.470]    [c.93]    [c.618]    [c.13]    [c.25]    [c.547]    [c.178]    [c.288]    [c.298]    [c.248]   
Смотреть главы в:

Окислительно-восстановительные реакции и потенциалы в аналитической химии -> Каталитический ток ионов водорода




ПОИСК





Смотрите так же термины и статьи:

Водорода ионы



© 2025 chem21.info Реклама на сайте