Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрический ток в газах и вакууме

    Прибор позволяет осуществлять непрерывное измерение вакуума в диапазоне значений вакуума от 10 до 10 Па. Принцип действия термокондуктометрического вакуумметра основан на зависимости теплопроводности газа от вакуума. Если в вакууме расположить нить и нагревать ее электрическим током, то температура такой нити будет зависеть от теплопроводности газа, окружающего нить, которая в [c.369]


    В 1855 г. немецкий стеклодув Генрих Гейслер (1814—1879) изготовил стеклянные сосуды особой формы и вакуумировал их им же изобретенным способом. Его друг немецкий физик и математик Юлиус Плюккер (1801—1868) использовал эти трубки Гейслера для изучения электрических разрядов в вакууме и газах. [c.147]

    Выплавка стали в электрических печах основана на использовании для нагрева, расплавления и поддержания металла в расплавленном состоянии электрической энергии, трансформируемой в теплоту. В отличие от кислородно-конвертерного метода при электроплавке выделение тепла не связано с использованием окислителей. Поэтому, плавку в электрических печах можно вести в любой атмосфере — окислительной, восстановительной, нейтральной (инертный газ) и в широком диапазоне давлений — в вакууме, при атмосферном или повышенном давлениях. [c.86]

    При уменьшении давления газа р и длины разрядного промежутка й все большую роль играют процессы на электродах при рй < 0,02 0,04 мм рт. ст.-см процессы на электродах становятся определяющими и меньшие значения рй соответствуют области вакуумного разряда, или электрического пробоя вакуума.  [c.427]

    Один из методов установления электрического момента диполя молекул основан на измерении диэлектрической проницаемости веществ при разных температурах. Для этого вещество в виде газа или разбавленного раствора в неполярном растворителе помещают между обкладками конденсатора. При этом емкость конденсатора увеличивается в е раз (е—диэлектрическая проницаемость). Если емкость конденсатора в вакууме обозначить С , а емкость с веществом С, то [c.156]

    Удаление влаги из твердых материалов испарением называется сушкой. В нефтепереработке применяется также процесс удаления влаги из жидкостей и газов, называемый осуш/сой. Осушка проводится методами абсорбции, адсорбции, воздействия электрического поля, испарения под вакуумом, фильтрации и т. д. [c.436]

    Использование безламельных электродов различных типов (спеченных, прессованных, вальцованных и других) привело к созданию ряда серий герметичных НК-аккумуляторов (НКГ), обладающих наилучшими электрическими и эксплуатационными характеристиками. Герметичные аккумуляторы гораздо удобнее в эксплуатации — они не требуют контроля уровня н состава электролита, могут работать в любом положении, не выделяют электролит и газы, работоспособны в условиях вакуума. Они характеризуются длительным сроком службы и высоким уровнем надежности. Герметичные аккумуляторы не нуждаются в регулировании тока или контроле напряжения в процессе заряда. Они допускают длительные перезаряды при условии, что исходный зарядный ток не будет превышать 0,1 Сном. [c.228]


    В результате первого процесса происходит изменение гальвани-потенциала фр, связанное с появлением так называемого ионного двойного электрического слоя слой зарядов на металле и слой зарядов противоположного знака (слой ионов) в растворе. Кроме скачка потенциала в этом ионном слое, который обозначают Дф, гальвани-потенциал мфр будет также содержать поверхностные скачки потенциала, находящиеся целиком в металле или растворе. Эти скачки потенциала существовали и до контакта металла с раствором фо и рфо. Однако после контакта они должны измениться. Изменение мФо связано с тем, что электронный газ металла выходит теперь не в воздух (вакуум), а в раствор. С другой стороны, ориентация диполей растворителя на границе с металлом может стать иной, чем на границе с воздухом. Таким образом, гальвани-потенциал на границе металл — раствор будет складываться из трех скачков потенциала  [c.25]

    В головке колонки. После окончания перегонки выключают электрический обогрев и охлаждающую воду, а также отключают вакуум. До отключения вакуума колонку целесообразно заполнить инертным газом во избежание окисления остатков вещества в колонке и перегонной колбе. После охлаждения определяют вес остатка в перегонной колбе и вес статической задержки, оставшейся в колонке, для чего колонку с перегонной колбой взвешивают до и после очистки. Если после перегонки остается высококипящий остаток, то колонку можно очистить добавкой низкокипящего растворителя (этиловый эфир, ацетон) через 1—2 час работы с полным орошением колонка и ее головка полностью отмываются. После этого содержимое перегонной колбы количественно переносят в взвешенную колбочку, отгоняют растворитель, снова взвешивают и находят таким образом общий вес кубового остатка и задержки колонки. Иногда в процессе ректификации колонка загрязняется вязкими полимерами, не растворяющимися в низкокипящих растворителях. В таких случаях для их вымывания следует использовать специальные растворители, например пиридин, монометиловый эфир этиленгликоля и т. д., перегоняя их в течение длительного времени с полным орошением колонки. После этого остаток использованного растворителя вымывают из колонки порцией легколетучего растворителя, который в свою очередь отгоняют при осторожном нагревании рубашки и продувании колонки инертным газом. Вычищенную и высушенную колонку хранят в закрытом виде, предохраняя ее от загрязнения и увлажнения. [c.255]

    Тантал — тяжелый металл характерного синевато-серого цвета. В чистом виде он обладает хорошими механическими свойствами твердостью, ковкостью и тягучестью. По прочности танталовая жесть как прокатанная, так и отпущенная близка к прокатанной и отпущенной стали. Тантал хорошо прокатывается и обрабатывается под давлением после отжига в холодном состоянии может быть обжат на 60%. Сваривается под водой как с самим собой, так и с ЫЬ и N1. Отличается плохой теплопроводностью и электропроводностью сопротивление тантала электрическому току в 7 раз больше, чем у меди, а температурный коэффициент электрического сопротивления меньше, чем у меди. При высокой температуре в вакууме он распыляется очень мало, на чем основано его применение в лампах накаливания. В нагретом состоянии поглощает N3 и другие газы, которые пол- [c.305]

    При неисправностях электрической проводки, газо- пли водопроводной сети, лабораторной аппаратуры, приборов, аналитических весов, вакуум-насосов тяги и т. п. немедленно [c.5]

    Другой широко распространенной группой детекторов, применяющихся во многих марках газовых хроматографов, являются детекторы, действие которых основано на измерении тока, з/ юат проходящего через ионизированный газ между двумя электродами. К этой группе относятся детекторы, в которых ионизация молекул может осуществляться под действием электрического разряда в вакууме либо в пламени при наличии электрического поля или под действием радиоактивного излучения. Наиболее распространен пламенно-ионизационный детектор. Работа его основана на том, что пламя чистого водорода почти не содержит ионов и поэтому обладает очень малой электропроводностью (фоновый ток порядка Ю А). При наличии газов или паров анализируемых веществ (за исключением СО, СО2, OS, Sj, H.jS, О2, Н2О, инертных газов) происходит ионизация пламени, возникают ионы и радикалы, электропроводность пламени резко возрастает (ток порядка 10- А), что и служит индикатором на присутствие в газе-носителе анализируемых веществ. Схема одного из пламенно-ионизационных детекторов приведена на рис. 38. Элюат смешивают с водородом и подают в сопло горелки, куда поступает очищенный воздух. Горение [c.93]

    Кроме тепловых, в ЭЛУ имеют место значительные электрические потери. Не все электроны пучка достигают поверхности ванны. Несмотря на вакуум, в камере печи имеются газовые частицы, сталкиваясь с которыми, электроны пучка ионизируют их и отдают им свою энергию образующиеся положительные ионы направляются к катоду и бомбардируют его. Этот процесс взаимодействия электронов пучка с остаточным газом сопровождается потерями энергии. Если давление остаточных газов в камере составляет 10- — Па, то эти потери невелики (1 — 1,5 %), если же давление увеличивается до 0.,1 Па, то потери энергии на столкновения электронов с атомами газа могут вырасти до 10 — 30% при этом камера начинает светиться, а в электронной пушке обычно происходит пробой, приводящий к отключению установки. [c.254]


    В дуговых электрических печах превращение электрической энергии в тепло происходит п основном в электрическом разряде, протекающем в газовой среде или вакууме. В таком разряде можно сосредоточить в сравнительно небольших объемах огромные мощности и получить очень высокие температуры. При этом в камере печи возникают большие температурные перепады, и поэтому невозможно достичь равномерного нагрева материалов или изделий. По этой же причине здесь затруднительно обеспечить точное регулирование температуры нагрева, а поэтому, нельзя проводить термическую обработку. Наоборот, для плавки материалов, в особенности металлов, дуговая печь очень удобна,так как высокая концентрация энергии позволяет быстро проводить расплавление. Дуговые устройства удобны также для проведения электротермических химических реакций в жидкой или газовой фазе и подогрева газов. Во всех этих случаях неравномерность нагрева не играет большой роли, так как благодаря теплопроводности и конвекции в жидкой ванне или газовом потоке температура довольно быстро выравнивается. [c.4]

    Изделия, на которые наносится покрытие в вакуумной камере, обычно подвергают предварительной очистке, обезжириванию и тщательной просушке. Во время откачивания воздуха из вакуумной камеры удаляются газы, оставшиеся при обработке изделия. Процессы выведения газа и получения рабочего давления в камере можно обеспечить и ускорить, если покрыть изделие лаком. Металл осаждается тогда на поверхность, покрытую лаком. При использовании простого процесса конденсации в вакууме металлические и неметаллические изделия обрабатываются одинаково. При катодном напылении необходимо предварительно обработать неметаллические изделия лаками, проводящими ток, чтобы они смогли принять электрический заряд высокого напряжения. [c.103]

    Известно, что интенсивность излучения тела возрастает пропорционально четвертой степени абсолютной температуры. Это следует из закона Стефана — Больцмана. Следовательно, повышение температуры вольфрамовой нити электрической лампочки всего на 100° с 2400 до 2500 °С приводит к увеличению светового потока на 16 %. Кроме того, с увеличением температуры в общем потоке излучения увеличивается доля видимого света. Это явление отражается законом Вина, т. е. с увеличением температуры нити накаливания растет светоотдача, а значит, увеличивается экономичность лампочки. Повышению температуры мешает разогревание стеклянного баллона и испарение нити. Снизить разогревание баллона можно созданием в нем вакуума. Этим путем уменьшается теплопроводность от нити до стекла. Однако в вакууме будет усиливаться испарение нити. Это будет приводить к ее утоньшению и в конце концов нить перегорит. Заполнение баллона инертным газом, например азотом, препятствует испарению нити и тем больше, чем тяжелее молекулы заполняющего газа. Оторвавшиеся от нити атомы вольфрама будут ударяться [c.166]

    Вакуумсоздающие системы с паровыми эжекторами обладают целым рядом принципиальных недостатков (низкий коэффициент полезного действия, значительный расход водяного пара и охлажденной воды для его. конденсации, загрязнение стоков воздушного бассейна и т.д.). В этой связи на перспективу следует рассматривать возможность замены их на вакуум-насосы с электрическим приводом. Применение последних может оказаться, 1яесмотря на более высокую стоимость электроэнергии, в целом выгоднее за счет возможности как уменьшения энергии на создание вакуума дополнительной утилизацией паров и газов, так и, что очень важно, исключения загрязнения сточных вод и воздушного бассейна. [c.40]

    Взвесь частиц в слабопроводящей среде (газе, вакууме, неполярной жидкости) может при достаточно высоких напряженностях электрического поля переносить ток между электродами за счет контактной или бесконтактной перезарядки частиц у электродов. Частицы при этом непрерывно циркулируют во взвеси от электрода к электроду, а порошки переходят к псевдоожиженпому состоянию. [c.201]

    Лаборатория должна быть обеспечена центральным отоплением, электрическим освещением, вводом технического электротока, газа, вакуума, воздуха, приточ1ной и вытяжной вентиляцией, водопроводом и канализацией. [c.4]

    Поясним эти понятия на примере металла и раствора электролита. Вследствие определенной упругости электронного газа и подвижности электронов некоторая часть из них может перейти из металла в вакуум, оставаясь, однар о, связанной с металлом за счет сил электрического отображения и сил притяжения между ними и поверхностными ионами решетки (рис. 3, а). [c.25]

    Анализ основан на строго определенном значении массы атома, молекулы или иона данного вещества определенного изотопного состава. Масс-спектраль-ный анализ веществ, в частности газов и паров, сводится, во-первых, к временному и пространственному разделению на группы различных по массе ионов, содержащихся в пробе вещества (электрически нейтральные атомы и молекулы предварительно подвергаются ионизации), посредством воздействия электромагнитного поля в высоком вакууме (до 10" мм рт. ст.), где взаимовлияние частиц сводится к минимуму, и, во-вторых, к измерению ионного тока, образуемого суммарным зарядом частиц одинаковой массы и характеризую-нюго их относительное содержание (концентрацию) в пробе. В результате последовательного изменения значения электромагнитных сил измерению подвергаются поочередно ионные токи (10" —10" й), соответствующие группам [c.603]

    Примеси значительно ухудшают механические, электрические и литейные свойства алюминия и снижают его коррозионную стойкость. Для очистки от механических примесей и растворенных газов алюминий, выкачанный из ванны, хлорируют непосредственно в вакуум-ковшах. При этом хлорируются водород н некоторые металлы, а образовавшиеся хлориды и механические примеси, всплывают на поверхность металла и удаляются АН- Мг -I- Са Mg l2 + СаС1г + А1С1з + А1 [c.35]

    В отличие от твердых и жидких материалов газы и пары могут находиться в столь разреженном состоянии, что движение заряженных частиц под действием наложенной разности потенциалов происходит практически без столкновений с другими частицами. В этих условиях подводимая электрическая энергия увеличивает кинетическую энергию заряженных частиц, которая может быть в дальнейшем превращена в тепло при соударении с материалами, подвергающимися технологической обработке. Этот способ превращения электрической энергии в тепло с промежуточным получением весьма высокой кинетической энергии заряженных частиц особенно выгоден при использовании электронов — частиц с минимальной массой, разгоняемых в вакууме до скоростей порядка десятых долей скорости света. Соответствующее устройство, схематически показанное на рис. 62, получило название электронной пушки, фо единст- [c.203]

    После хроматофафического разделения молекулы образца ионизируются в вакууме или в атмосфере инертного газа. В настоящее время чаще всего используют ионные источники, в которых определяемое вещество ионизируется под действием пучка электронов, испускаемых раскаленным рениевым или вольфрамовым нитевидным катодом и ускоряющихся в электрическом поле (электронный удар) Для предотвращения конденсации вещества на стенках ионизационной камеры ее обычно нафевают до 200-250 "С. При соударении электронов с молекулами образца последние ионизируются  [c.263]

    Перестройка структуры конденсированных углеродсодержащих материалов. Впервые этот подход был реализован Ugarte при воздействии пучка электронов на сажу полученную в результате испарения фафита в электрической дуге. Banhart с сотрудниками обнаружили взаимное преобразование частиц УЛС в алмаз и наоборот алмазных частиц в УЛС под пучком электронного микроскопа. В дальнейщем формирование полых частиц УЛС было целенаправленно осуществлено при термическом нагреве сажи в вакууме или атмосфере инертного газа. Следует отметить, что ранее полые углеродные частицы наблюдали также при профеве саж при температуре выше 2500 К. Нами был разработан метод получения макроскопических количеств УЛС, базирующийся на термическом отжиге наноразмерньгх алмазов. [c.125]

    Металлические пленки, получаемые испарением металла и последующей его конденсацией, также захватывают примеси из вакуума . Во время получения этих пленок за счет испарения металла достигается очень высокий вакуум. После этого происходит загрязнение пленки следами газов, выделяющихся из различных частей прибора. Однако благодаря весьма большой величине поверхности пленки могут сохраняться в чистом состоянии значительно дольше, чем нити. Многие пленки, по-видимому, имеют еще и то преимущество, что их поверхность образована преимущественно одной кристаллографической плоскостью. При этом методе приготовления металлических поверхностей создаются необычные условия для процесса кристаллизации [11], и поэтому возможно, что образующаяся кристаллическая грань отличается от граней, возникающих при получении исследуемого металла другими методами. Использование пленок имеет, однако, один недостаток. Вследствие исключительно большой величины поверхности пленок на единицу веса металла [262] они обладают высокой поверхностной энергией. Средняя толщина первичных слоев, из которых состоит вся пленка, очень мала, и поэтому пленки по своим электрическим свойствам отличаются от обычных металлов [263], Во многих случаях у пленок наблюдается некоторое увеличение параметров решетки, достигающее 1—2% [264]. Лишь после сильного спекания их структура приближается к более нормальному состоянию металла. Согласно наблюдениям Миньоле [259], у пленки работа выхода в процессе спекания возрастает, приближаясь к величине, характерной для нормального металла. Вполне возможно, что во время процесса спекания происходит захват примесей. На получение пленок с сильно развитой поверхностью, а следовательно, с предельно открытой структурой большое влияние оказывает скорость испарения и конденсации металла. Пленки вольфрама по своим свойствам несколько более приближаются к нормальным металлам, чем не подвергнутые спеканию никелевые пленки. [c.142]

    Рентгеновская высокотемпературная установка УРВТ-1300 предназначена для исследования методом Дебая поликристаллических образцов в интервале температур от комнатной до 1300°С в вакууме и до 1100°С в воздухе или атмосфере инертного газа. С помощью установки УРВТ-1300 можно изучать высокотемпературные фазовые переходы, измерять параметры кристаллической решетки и коэффициент термического расширения и др. Нагревание образца в установке осуществляется электрической печью сопротивления. [c.104]

    Рентгеновская высокотемпературная приставка УРВТ-1500 используется для исследования фазовых переходов, определения параметров кристаллической решетки, коэффициента термического расширения и т. д. различных материалов на дифрактометрах УРС-50-ИМ и ДРОН-1 при температурах до 1500°С в вакууме и до 1200°С в воздухе или атмосфере инертного газа. Нагрев образца осуществляется электрической печью сопротивления. Приставка снабжена системой автоматического поддерживания температуры и ее измерения (точность поддерживания температуры 3°С, точность измерения 5°С). [c.104]

    При неисправности электрической прово.дки, газа или водопроводной сети, лабораторной аппаратуры, приборов, аналитических весов, вакуум-найосов, тяги и т.п. необходиио немедленно сообщить учебному лаборанту и преподавателю о замеченной неисправности. [c.14]

    Голдштейн воспользовался разрядной трубкой с просверленным катодом если вакуум был не слишком высок, то позади катода он наблюдал излучение. Как уже указывалось, если приложить разность потенциалов, то молекулы нейтрального газа ионизируются с образованием положительных и отрицательных частиц. Положительные ионы могут возникнуть и при столкновении электронов с нейтральными атомами газа. Эти ионы ускоренно движутся к катоду они образуют пучок положительных лучей, которые называются каналовыми лучами. Их положительный заряд подтверждается искривлением траектории пучка этих частиц при прохождении через электрическое или магнитное поле. [c.14]

    В области высокого вакуума от Ю до 10 мм рт. ст. обычно применяют понизаппонные вакуумметры с точностью показаний и интервале 10 —10 мм рт. ст. около 3%. Эти приборы основаны на измерении ионного тока в триоде, вызванного в остаточном газе потоком электронов определенной интенсивности. Ионный ток пропорционален измеряемому давлению газа и зависит от природы газа. Благодаря постоянству потока электронов, который регулируют в соответствии с силой тока прп калибровке, возможно непосредственное измерение давления по указывающему прибору. Так, в ионизационном вакуумметре типа УМ-Т [48] электрический прибор, включаемый непосредственно в сеть, обеспечивает в измерительных трубках создание соответствующих напряжений, автоматически регулирует постоянство заданного эмиссионного тока на катодах и снабжен вольтметром с линейной шкалой и высоким постоянством пулевой точки, показывающим величину давления. Переключение с одного диапазона измерений давления на другой производят при помощи кнопочного переключателя, имеющего контакты для включения прибора, а также включения и выключе- [c.506]

    Из формулы (732а) следует, что фотоэлектрическая граница определяется работой выхода, последняя же определяется также условиями на поверхности металла. Таким образом, можно ожидать, что граничная частота (Оо в сильной мере зависит от состояния поверхности металла. Это полностью подтверждается опытом. Обработка поверхности, наличие адсорбированных газов и пр. (см. гл. IX) могут сильно менять величину работы выхода, а вместе с ней и величину красной границы и тем самым делают задачу определения красной границы чистых металлов весьма трудной. На величину (Од может оказать существенное влияние и температура металла. Опыты с чистыми поверхностями в вакууме показали, что фототок незначительно меняется с температурой при частотах, далеких от границы ((о — (Оо > соо), и резко возрастает при частотах, близких к ней, особенно при (о (Оо, т. е. температура эффективно смещает красную границу в область меньших частот, и эта граница перестает быть резкой с ростом температуры. Аналогично температуре действует на фототок ускоряющее электрическое поле у поверхности фотокатода. Влияние этого поля незначительно при частотах со, далеких от красной границы ((о > > (Оо), и очень существенно при (о, близких к (Оо. [c.413]

    Ртуть как жидкий металл, хорошо поддающийся очистке От примесей и относительно инертный химически, очень часто употрбляют как эталон. Например, эталон электрического сопротивления I Ом равен сопротивлению ртутного столба сечением 1 мм и длиной 106,3 см. Эталон напряжений — элемент Вестона — построен из ртути и амальгамы кадмия. Барометрические приборы градуируются по ртутным барометрам. Ртуть используется в термометрах. Впервые диффузионный насос для получения высокого вакуума был построен Лангмюром и основан на потоке тяжелых паров ртути, увлекающих за собой молекулы газа. До сих пор эти насосы находят широкое применение. Зеркала покрывают амальгамой ртути, т. е. ее сплавом. Разложение амальгам позволяет получать чистые металлы, например натрий при электролизе водных растворов Na l с ртутным катодом, накапливается в виде амальгамы натрия и выделяется методом дистилляции. [c.407]

    Ионное осаждение в вакууме отличается от предыдущего метода тем, что пары осаждаемого металла или сплава ионизируются в плазме тлеющего разряда, в котором катодом слум<ит испаряемый материал, а анодом — подложка. Нагрев производят различными методами. Пары металла попадают в плазму при сравнительно высоком давлении (0,1—1,0 Па) инертного газа (Не, Аг, Кг). При этом происходит ионизация паров, ионы ускоряются электрическим полем, поток ионов осаждается на подложке. Этот метод — разновидность плазменного напыления. [c.140]

    В данном случае основным элементом электронной пушки является кольцеобразный катод I из вольфрамовой проволоки, к которому подведен электрический ток напряжением 15000 в. Поток электронов от раскаленного катода при помош,и фокусирующего устройства 2 направляется в изложницу 3, являющуюся анодом. Верхняя часть изложницы оборудована водяным охлаждением 4. Все устройство находится в герметичной камере 5, соединенной с вакуумным насосом 6. Материал загружают через бункер 7, а продукция по мере застывания металла выдается через вауумный затвор 5. В случае необходимости через трубку 9 к поверхности расплавляемого материала можно подвести тот или иной газ. В зависимости от технологических требований конструкция электронно-лучевой печи может быть выполнена так, чтобь глубина вакуума собственно печи (анода). может быть иной, чем катода (в сто и более раз ниже). [c.258]

    После этого всю реакционную смесь переносят в 2-литровый стакан (или вширок горлую коническую колбу), содержащую около 1 л абсолютного этилового спирта (примечание 6). Полученный бурый раствор нагревают на электрической плитке до кипения при этом происходит обильное выделение газов (примечание 6). Затем раствор фильтруют в горячем состоянии, чтобы освободить его от небольшого количества нерастворимых примесей. Фильтрат охлаждают в бане со льдом и солью синтезируемый препарат выпадает в осадок в виде красивых бесцветных кристаллов, которые отфильтровывают на воронке Бюхнера и сушат в вакуум-эксикаторе над фосфорным ангидридом (примечание 7). Выход чистого вещества с т. пл. 201,5 203° составляет 227—272 г (67—80% теоретич.). [c.168]

    Интерфейс с электрораспылением (ЭРИ) работает при значительно более низких скоростях потока, обычно 1-10 мкл/мин. Процесс ионизации с электрораспылением включает распыление потока жидкости в аэрозоль с каплями, несущими большой заряд, и ионизацию определяемых молекул после удаления растворителя из заряженных капель. ЭРИ относится к интерфейсам АДИ, поскольку проба вводится после соответствующего деления с хроматографической колонки или непосредственно через инфузионный аппарат с помощью иглы из нержавеющей стали в десольватационную камеру при атмосферном давлении (рис. 14.3-7). В то время как игла находится при заземленном потенциале, к цилиндрическому электроду прикладывается сильное электрическое поле (2-5 кВ), которое заряжает поверхность жидкости, выходящей из иглы, при этом создается тонкий аэрозоль из заряженных капелек. Двигаясь в электрическом поле, капельки проходят через поток осушающего азота. Поток газа предназначен для испарения растворителя, а также чтобы предотвратить попадание незаряженных частиц в источник ионов. Затем ионы проходят через капилляр и попадают в вакуум первого уровня откачки, а затем, после прохождения через систему линз и дальнейшую откачку, в масс-анализатор. [c.627]


Библиография для Электрический ток в газах и вакууме: [c.568]    [c.407]   
Смотреть страницы где упоминается термин Электрический ток в газах и вакууме: [c.166]    [c.70]    [c.534]    [c.54]    [c.94]    [c.527]    [c.139]    [c.280]    [c.83]    [c.6]   
Смотреть главы в:

Оптический и рентгеноспектральный анализ -> Электрический ток в газах и вакууме




ПОИСК







© 2025 chem21.info Реклама на сайте