Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен производные

    Ионно-координационная полимеризация происходит тогда, когда между мономерами и активным центром возникает координационный комплекс. Структура мономера и тип катализатора оказывают решающее действие как на процесс комплексообразования, так и на стереорегулярность полимера. В качестве катализаторов чаще всего применяют комплексные соединения, так называемые катализаторы Циглера - Натта. Эти катализаторы образуются из алкилов металлов переменной валентности и галогенидов металлов. Катализаторами могут являться также я-аллильные комплексы переходных металлов и оксидно-металлические катализаторы. Из катализаторов Циглера - Натта в производстве обычно используют комплексы алюминий-алкилов и галогенпроизводные титана и ванадия. Такие катализаторы используются для полимеризации неполярных алкенов (этилен, пропилен и др.) и диенов (бутадиен, изопрен и их производные). [c.35]


    В качестве пленкообразующих материалов в водных составах применяют сополимеры акриловой кислоты и ее производные, бутадиен-стирольные латексы, водные дисперсии модифицированного поливинилацетата и др. [c.201]

    Примером отщепления двух молекул воды от гликоля может служить получение производных бутадиенов из соответствующих бутандиолов-1,3 в присутствии фосфорной кислоты при температуре 300° , а также превращение пинакона в 2,3-диметилбутадиен в присутствии бромистоводородной кислоты или трихлоруксусной кислоты .  [c.699]

    Процессы дегидрирования и гидрирования имеют очень важное значение в промышленности. Дегидрированием получают ненасыщенные соединения, представляющие большую ценность в качестве мономеров для производства синтетического каучука и пластических масс (бутадиен-1,3, изопрен, стирол), а также некоторые альдегиды и кетоны (формальдегид, ацетон, метилэтилкетон). Реакциями гидрирования синтезируют циклогексан и его производные, многие амины (анилин, гекеаметилендиамин), спирты (н-пропиловый, -бутиловый и высшие). Процессы гидрирования применяют также при гидрогенизации жиров и получении искусственного жидкого топлива (гидрокрекинг, риформинг, гидрогенизация угля н т. д.). Очень часто реакции гидрирования и дегидрирования являются этапами многостадийных синтезов ценных органических соединений — мономеров, поверхностно-активных ве-щестп, растворителей п т. д. [c.456]

    При использовании в качестве диенофила бензохинона и его производных, например толухинона, при реакции с бутадиеном образуются гидрированные производные нафтохинона, которые легко, особенно в щелочной среде, при действии воздуха превращаются в производные нафтохинона  [c.286]

    При полимеризации в растворе существенно облегчается отвод теплоты из реакционных объемов, перемешивание и транспортирование продуктов реакции, возможность организации непрерывного лроизводства и автоматизации управления им. Для полимеризации углеводородов и их производных (этилен, бутадиен и их производные) в качестве растворителей используются гексан, гептан, бензин, толуол, циклогексан и другие углеводороды. Очистка растворителей и реагентов от влаги и кислорода осуществляется осушением и проведением процесса в среде инертных газов. Концентрация мономера в растворе не должна превышать 20%, чтобы избежать роста вязкости системы. Для сокращения расхода растворителя его регенерируют после проведения процесса полимеризации. В образующемся полимере необходимо дезактивировать (или удалять) катализатор, так как он ухудшает свойства полимера и изделий из него (устойчивость к старению, действию химических сред и др.). [c.82]


    Бутадиен и его производные составляют основу большинства синтетических каучуков. Так, полимеризация 2,3-диметилбутадиена с натрием дает каучук, который [c.187]

    Наиболее универсальным сортом синтетического каучука является сорт ОН-З, годовое производство его в 1953 г. составило около 750 ООО Он получается полимеризацией в водной эмульсии системы из 78 частей бутадиена-1,3 и 22 частей стирола. Стирол может быть заменен метил-производными стирола, а именно — винилтолуолом. Бутадиен получается из нефти и из этилового спирта,-а стирол из бензола и этилена с последующей термической дегидрогенизацией. [c.210]

    Полимеризация происходит путем последовательного присоединения молекул бутадиена между углеродной цепью и щелочным металлом и протекает на поверхности катализатора. По-видимому, бутадиен адсорбируется на поверхности металлического натрия, поляризуется и в поляризованном состоянии полимеризуется с образованием карбаниона. Поскольку скорость образования ди-натриевого производного намного меньше скорости роста цепи, трудно выделить низкомолекулярные промежуточные формы этих полимеров и подробно изучить состав таких промежуточных продуктов. Доказательством приведенного выше механизма процесса полимеризации служат результаты анализа пизкомолекулярных фракций полимера, в которых присутствуют атомы металла. [c.229]

    Б реакциях радикальной полимеризации способно участвовать абсолютное большинство выпускаемых промышленностью мономеров этиленового ряда, а также бутадиен и его производные (изопрен, хлоропрен). Однако активность мономеров в этих реакциях существенно зависит от природы заместителей при атомах углерода. Рассмотрим сравнительную активность мономеров на примере [c.29]

    Подобно алкенам, бутадиен-1,3 и его производные могут полимеризоваться, причем реакция протекает по 1,2- или 1,4-механизму  [c.132]

    К диенофилам относятся производные малеиновой и акриловой кислот, акролеин, хинон к диенам — бутадиен, циклопентадиен, циклогексадиен и др. [c.105]

    Момент времени, начиная с которого знак второй производной вязкости по времени меняется на минус по условию (8), является показателем начала стабилизации системы на ее пути к предельной вязкости. Естественно, при этом вторая производная также стремится к нулю при достижении Например, при модифицировании стандартного окисленного битума БНД 60/90 двумя промышленными эластомерами — этиленпропиленовым сополимером СКЭПТ (третий мономер — дициклопентадиен) и бутадиен-стирольным термоэластопластом ДСТ-ЗОр-01 эффективная динамическая вязкость Т1 реакционной смеси определяется по ходу диспергирования от начального момента времени /о через равные дискретные промежутки времени 1, [c.124]

    Циклобутен при нагр. до 180 С изомеризуется количественно в 1,3-бутадиен. Такое раскрытие производных циклобутена часто используют для синтеза разнообразных [c.370]

    Ароматические углеводороды и малеиновый ангидрид дают по реакции Фриделя и Крафтса ароилакриловые кислоты, образующие при взаимодействии с бутадиенами производные тетрагидро-2-бензоил- [c.194]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    Применяемое сырье, получаемые полупродукты и побочные продукты, поскольку в их составе отсутствуют молекулы с тройными связями, являются менее взрывоопасными и более стабильными углеводородами по сравнению с углеводородами ацетиленового ряда. Бутадиен, в отличие от ацетилена и его производных, имеет повышенную устойчивость к разложению и пе обладает в чистом виде в условиях производства взрывчатыми свойствами и способностью детонировать. Получаемые при хлорировании дихлорбуте-ны, побочные продукты хлорирования, перхлорирования и термического деструктивного дегидрохлорирования (углерод в виде сажи) малогорючи или совсем негорючи, термически более стойки и менее летучи по сравнению с исходным бутадиеном. [c.66]

    Одним из важных классов реакций, в которые вступают ненасыщенные углеводороды (и их замещенные производные), является групиа реакций конденсации, ведущих к образованию более высокомолекулярных продуктов они протекают в отсутствии катализаторов и обычно при повышенных температурах. Реакция Дильса-Альдера — наиболее известный представитель этого класса реакций. Типичным примером зтой реакции является взаимодействие между малеиновым ангидридом iu бутадиеном с образованием тетрагидрофталевого ангидрида  [c.175]


    Среди высокомолекулярных соединений значительную роль играет стирол (фенилэтилен). Он широко применяется для полимеризации в полистиролы и для сополимеризации с дивинилом в бутадиен-стирольные каучуки типа буна S и буна SS. Кроме того, известны другие сополимеры стирола, например с акрилонитрилом, фумаро-нитрилом, rt-бромстиролом. Исключительное внимание уделяется получению производных стирола (метилстирол, галогенпроизводные, нитропроизводные, алкоксистиролы, алкилстиролы и т. д.). Введение заместителей позволяет изменять скорости полимеризации и свойства получаемых полимеров. Интересно отметить, что введение заместителей возможно также и в молекулы различных полистиролов [49 . [c.612]

    Простейшие олефины так же действуют, как диенофилы, по требуют сравнительно более высоких температур. Например этилен и бутадиен при 200° дают циклогексен с выходом 18% [31]. С другими диенами были получены лучшие выходы, например с 2,3-диметилбутадиеном (50%) и циклопентадиеном (74%) [31]. При более высокой температуре такие реакции обратимы и пиролиз циклогексена является одним иа хороших лабораторных методов получения бутадиена. Винилацетат, хлористый винил, другие хлорзамещенные этилены и различные аллильные производные такн е вступают в реакцию конденсации с реакционноспособными диенами при 100—200°, однако известно, что все эти реакции должны проводиться при сравнительно высоких давлениях [27]. Стирол и другие фенилзамещенные этилены, по-видимому, в некоторых случаях вступают в реакцию, и, как будет показано ниже, молекулы диенов могут конденсироваться одна с другой, например, при димеризации бутадиена в ви-нилциклогексен [35]. Эта специфическая реакция весьма услон няет работу с бутадиеном. Конденсации такого рода в качестве побочной реакции возможны при любой из реакций Дильса-Альдера  [c.177]

    КАУЧУК СИНТЕТИЧЕСКИЙ (СК)-высокополимерный каучукоподобный материал, получаемый полимеризацией и сополимеризацией различных непредельных соединений (бутадиен, стирол, изопрен, хлоропрен, изобутилен, нитрил акриловой кислоты) или поликонденсацией соответствующих бифункциональных производных углеводородов. Подобно И К К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч, иногда миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, обусловливающая характерные для резины физико-механические свойства. Некоторые виды К. с. (напр., полиизо-бутиленовый, силиконовый и др.) — полностью предельные соединения, вулканизуются в присутствии органических пероксидов, аминов и др. По техническим свойствам некоторые К. с. значительно превосходят НК, но в отличие от НК в К с. при переработке требуется вводить специальные активные наполнители (сажу, активную кремнекис-лоту, оксид алюминия, каолин, мел и др.), усиливающие механическую прочность вулканизаторов. К. с. применяют для изготовления резин, резиновых изделий, автошин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.123]

    Этот 308-пиридиновый комплекс в растворе дихлорэтана при 110° с бутадиеном дает моносульфоновое производное бутадиена с выходом 77%. Свободная кислота может быть частично гидрирована над никелем Ренея в 1-бутен-1-сульфонат. Изопрен дает аналогичный продукт [39]. [c.351]

    Сдваивание производных олефинов в результате фотохимических реакций во многих случаях приводит к димерным циклобутанам этот процесс не имеет отношения к образованию олефинов. Однако в тех случаях, когда получаются олефины, течение реакции отли- чается от термической димеризации или от реакции Дильса — Альдера. При облучении бутадиенов в концентрированном растворе в присутствии сенсибилизатора (в противоположность разбавленному раствору в отсутствие сенсибилизатора) образуются димерные олефины [57] [c.149]

    Под синтетическими латексами обычно подразумевают дисперсии полимеров в воде, образующиеся при эмульсионной полимеризации или сополимеризации. К синтетическим латексам относятся сополимеры стирола с бутадиеном, сополимеры производных акриловой и метакриловой кислот, полимеры и сополимеры винилхлорида и винилиденхлорида. [c.54]

    Получены я-комплексы металлов с производными циклобутадиена. Этот лиганд, гораздо более напряженный, чем циклобутан, неустойчив и не выделен, но он стабилизируется, входя в качестве я-лиганда в комплекс. Так, реакцией дихлорциклобутена с Ре2(С0)а в пентане при 30 °С получены трикарбонил (я-цикло-бутадиен) железо  [c.111]

    При наличии других двойных связей, как изолированных [251], так и сопряженных [226, 249а], реакция тоже может быть направлена так, что преимущественно будет восстанавливаться тройная связь. Из винилацетилена [168] над палладием. на сульфате бария можно, например, получать бутадиен-1,3 с выходом 69% от теоретического. Поэтому каталитическое гидрирование широко применяется для синтезов полиенов [97, 105, 226, 242, 252, 254]. Из соединений с двумя ацетиленовыми связями долучайт соответственно производные диолефинов [248, 249Ь,с], [c.55]

    Возможная роль комплексов, в которых происходит перенос заряда, типа предложенных для объяснения реакции Дильса — Альдера [40] в качестве промежуточных соединений при образовании циклобутановых производных в результате реакции циклоприсоедипения, отнюдь не ясна. Тетрафторэтилен и вещества ему подобные вряд ли могут одинаково хорошо служить как донором, так и. акцептором при образовании комплексов, в которых происходит перенос заряда. Тем не менее такие вещества могут гладко димеризоваться с образованием циклобутановых производных. На этом оашваиии, по-видимому, лучше всего прийти к выводу, что образование промежуточных соединений, в которых происходит перенос заряда, не следует рассматривать в качестве необходимого условия для реакции циклоприсоединения. Однако, как это уже было сказано выше, тетрафторэтилен и бутадиен вступают в реакцию друг с другом легче, чем каждый из них димеризуется. Этот факт указывает Е1а то, что взаимная поляризация -(или что-то похожее на пере-Еюс заряда) способствует стабилизации переходного состояния в реакции циклоприсоединения независимо рт того, каковы детали механизма этой реакции. [c.15]

    Активированные алкены. Имеются указания на то, что большое число алкенов с соответствующими активирующими груи-пами димеризуются прй различных температурах с образованием с пеболыпимй выходами производных циклобутапа. В качестве примерев можно прййесгн -бутадиен [45, 46], акрилонитрил [25] и циклооктадиен-1, Б [6]. Как правило, к активирующим группам относятся такие, от которых можно ожидать, что рнн будут стабилизировать свободные радикалы и, как это было [c.33]

    К этилену и различным замещенным этиленам родан присоединяется с образованием веществ, содержащих две родангруппы. Эта реакция является, повидимому, общей, так как установлено, что в нее вступают такие соединения, как амилен, циклогексен, аллиловый спирт, пинен, стирол, стильбен, анетол, изосафрол, олеиновая и другие ненасыщенные кислоты. Выходы при этом почти всегда получаются количественные. Родан присоединяется к а, -ненасыщенным кетонам, но не присоединяется к а, -ненасыщенным кислотам. Присоединение к другим а, -ненасыщенным карбонильным или аналогичным соединениям не изучалось. Соединения с сопряженными двойными связями реагируют с роданом так же, как с галоидами, присоединяя две родангруппы, вероятно в положения 1,4. В литературе описаны реакции с бутадиеном, изопреном и диметилбутадиеном. Соединения ацетиленового ряда, поведение которых в этой реакции было описано (ацетилен, фенилацетилен и толан), присоединяют одну молекулу родана, образуя производные дироданэтилена. Выходы при этом ниже, чем при присоединении к двойной связи. [c.232]

    Для фрагмента =С—С= (в диенах, дикарбонильных соед., производных щавелевой к-ты, бензальдегиде и т.п.) устойчивы плоские конформации, что обусловлеио значит. Сопряжением в плоских струггурах. Это приводит к двукратному барьеру вращения с максимумом прн 90 (20,5 кДж/моль в бутадиене). При вращении относительно sp -sp -связи (напр., в пропилене, ацетальдегиде) обычио более стабильны заслоненные конформации типа IV, а конформации типа VI соответствуют наивысшей энергии. Конформации V представляют промежут. минимум. Если три заместителя у ip -атома одинаковы (нитрометаи, толуол), то имеется симметричный шестикратный барьер, описываемый ф-лой И(ф) = (Кб/2)(1 — os6устойчива также заслоненная конформация. Барьер вращения вокруг ip-i/p -связи практически равен нулю. [c.458]

    Н. нитруется до смеси 5-(выход 70%) и 6-иитро-производных, под действием конц. HNO3 в СН3СООН окисляется до фталевой к-ты и 5-гидрокси-1,4-нафтохинона с солями арилдиазония образует 2-арил-1,4-нафтохиноны вступает в диеновый синтез с бутадиеном или его замещенными с образованием тетрагидроантрахинонов, к-рые дегидрируются (напр., фталевым ангидридом) до антрахино-нов  [c.199]

    Проведенпе реакции в токе СОз над катализатором — окись хрома с разными добавками — приводит к глубокой конверсии бутана с образованием СО, Н2 и СН4. Это показывает, насколько устойчивы в этих условиях алканы и как склонны они к реакциям. распада. В тех же условиях бутен и этилбензол легко дегидрогенн-зируются. Этилбензол дает выход до 55% стирола за пропуск, причем распад на газообразные продукты составляет только 8—10%, катализатор. легко регенерируется и долго работает. Бутен дегидрируется с выходами бутадиена 33—34% на пропущенный или 80—90% па превращенный бутен Бутадиен, полученный дегидрогенизацией бутена или бутана, не загрязнен производными этина (ацетилена), как бутадиен из газов ииролиза (производные этина делают невозможной полимеризацию бутадиена над металлическим натрием). Один из балансовых опытов дегидрирования бутена над хромовым катализатором (сформован в виде цилиндриков плотность 2,89, насыпной вес 0,78 жг/л) при режиме процесса температура 600° С, давление 180 мм рт. ст., время контакта 0,65 сек., скорость подачи 1660 д/час л, следуюпщй. [c.295]

    Ha практике обычно используют не диенонитрилы (2.1), а более доступные 4-диалкиламино-1,3-бутадиен-1,1-дикарбонитрилы, которые при нагревании до 150 °С в спиртовом растворе аммиака в автоклаве превращаются в производные 2-аминопиридина (2.3) [883— 894]  [c.89]


Смотреть страницы где упоминается термин Бутадиен производные : [c.379]    [c.358]    [c.79]    [c.9]    [c.83]    [c.255]    [c.133]    [c.621]    [c.371]    [c.138]    [c.148]    [c.348]    [c.337]   
Общая органическая химия Т.1 (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминия яма производных бутадиен

Бутадиен производные с хлором

Бутадиен производные, полимеризация

Бутадиен с производными серы

Бутадиен, производные с хлористым

Бутадиен, производные с хлористым иодом

Кислородные производные бутадиена

Присоединение двуиодистого германия к производным ацетилена и бутадиена



© 2025 chem21.info Реклама на сайте