Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности анализа анионов

    Классификация анионов. Особенности анализа анионов [c.164]

    Особенности анализа анионов [c.102]

    С помощью групповых реа кций получают довольно точные сведения о присутствии или отсутствии многих ионов. При этом Обычно применяют реакции осаждения или окисления-восста-новления, характерные для ионов определенной группы. Групповые реакции имеют особенно большое значение в анализе анионов, поскольку практически не существует систематического хода разделения анионов. [c.54]


    Анализ анионов имеет свои особенности. В отличие от катионов анионы обычно не мешают обнаружению друг друга. Поэтому многие из них обнаруживают дробным методом в отдельных порциях испытуе- [c.143]

    Анализ анионов имеет свои особенности. В отличие от катионов, анионы обычно не мешают обнаружению друг друга. Поэтому многие из них открывают дробным методом в отдельных порциях испытуемого раствора. К систематическому ходу анализа прибегают лишь в наиболее сложных случаях, например, при наличии в растворе анионов-восстановителей или окислителей. [c.165]

    Зависимость адсорбции от концентрации примесей имеет сравнительно небольшое значение в количественном анализе. Химик обычно не имеет возможности сильно уменьшить концентрацию примесей, так как она обусловлена главным образом составом анализируемого объекта, а также методом анализа, который обычно приходится выбирать по другим сооб-рал<ениям. Большее значение имеет следующая особенность адсорбции. Адсорбция при образовании осадков зависит от характера находящихся в растворе ионов. Обычно раствор содержит различные ионы. Из них наиболее сильно адсорбируются те, которые дают с ионами осадка нерастворимые или малодиссоциирующие соединения. Таким сильно адсорбирующимся ионом является часто собственный (одноименный) ион осадка, находящийся в данных условиях в избытке. Если, например, осадок иодистого серебра находится в растворе, содержащем анионы ЫОз , С1 и Л ,то сильнее всего адсорбируются ионы [c.61]

    Реакции, основанные на образовании труднорастворимых солей серебра, были применены вначале для определения серебра. Этими методами и в настоящее время пользуются для установления процентного содержания (пробы) серебра в сплавах (пробирный анализ) и при анализе руд. Однако значительно более широко они применяются для определения различных анионов, особенно при анализе природных и технических вод. Некоторые анионы образуют с серебром окрашенные осадки, поэтому трудно наблюдать за изменением окраски тогда удобнее титровать по остатку. Так, например, при определении фосфатов, йодидов, арсенатов и т. д. испытуемый раствор обрабатывают избытком рабочего титрованного раствора азотнокислого серебра осадок отделяют и затем остаток серебра титруют другим рабочим раствором, например роданистым аммонием. [c.418]


    Если наряду с натрием в больших количествах присутствует калий, то он также ионизируется. В связи с этим повышается парциальное давление электронов и равновесие ионизации натрия смеш,ается. Вследствие увеличиваю-ш,егося по этой причине числа нейтральных атомов натрия при одном и том же общем содержании натрия наблюдается возрастание интенсивности. Такое изменение интенсивности под влиянием других присутствуюш,их элементов называют эффектом матрицы. В общем анионы влияют преимущественно на реакции испарения и диссоциации, а катионы — на процессы ионизации и возбуждения. Особенно заметным становится влия ше анионов при более низких температурах, а помехи со стороны катионов — при более высоких. Однако разграничение различных факторов, влияющих на интенсивность, провести трудно, поскольку положение линии при изменении состава пробы изменяется незначительно, а интенсивность линии, помимо содержания соответствующего элемента, зависит еще и от остальных компонентов пробы. По этой причине интенсивность линии в количественном анализе можно рассматривать как достоверную меру только для проб приблизительно одинакового состава. [c.186]

    В условиях качественного анализа фосфорная и серная кислоты обычно не восстанавливаются. Это требует специальных условий. Окислительные свойства для них нехарактерны, особенно в разбавленных растворах. Однако концентрированная серная кислота, в особенности при нагревании — сильный окислитель, что используется в предварительных испытаниях на анионы. [c.244]

    В зависимости от характера анализируемого материала различают анализ неорганических и органических веществ. Выделение анализа органических веществ в отдельный раздел аналитической химии связано с некоторыми особенностями органических соединений по сравнению с неорганическими. Часто первый этап анализа состоит в переведении пробы в раствор. При анализе неорганических материалов растворителем чаще всего служит вода или водные растворы кислот или щелочей. Полученный раствор содержит катионы и анионы подлежащих определению элементов. Для их обнаружения применяют реагенты, которые взаимодействуют с определяемыми ионами, как правило, очень быстро, причем в большинстве случаев реакции доходят до конца. При анализе органических соединений нередко необходимо провести предварительную минерализацию пробы, т. е. разрушить ее органическую часть прокаливанием или обработкой концентрированными кислотами. Нерастворимые в воде органические соединения иногда растворяют в органических растворителях реакции между органическими соединениями обычно протекают медленно и почти никогда не доходят до конца, причем они могут протекать по нескольким направлениям с образованием разнообразных продуктов реакции. Б анализе применяют и некоторые другие [c.13]

    При анализе pH раствора выбирают таким образом, чтобы молекула образца была полностью ионизирована, обычно для кислот рН=рКа+1,5, а для оснований рН=рКа+1,5. Изменение pH подвижной фазы влияет на удерживание образца. Оно с повышением pH увеличивается при анионообменном разделении и уменьшается при катионообменном, т.е. происходит уменьшение силы растворителя при анионном и увеличение при катионном обмене. Особенно сильно влияет изменение pH раствора, происходящее вблизи значений рКа образца. [c.36]

    С помощью двухколоночной ионной хроматографии определяют большое число неорганических и органических анионов, катионы щелочных и щелочноземельных металлов и некоторые амины. Метод наиболее активно используется в анализе объектов окружающей среды, особенно вод разного типа [38]. Все большее место он занимает в анализе почв, минералов, атмосферного воздуха и многих других объектов. Исполнение ионообменных хроматографов в переносном виде обеспечивает дополнительные технические возможности их применения, например для мониторинга окружающей среды. [c.97]

    Как уже указывалось, ряд соединений, а особенно минералов, может иметь одинаковый качественный состав, но различное количественное соотношение катионов и анионов поэтому в таких случаях заключение о составе соединения может быть дано только на основании данных количественного анализа или изучения его физических свойств. [c.147]

    Чаще всего лимитируется содержание железа и меди (допустимый уровень — 10 -10" %). Другие примеси определяют реже, но для некоторых веществ необходим контроль их содержанта на уровне 10 %, который не обеспечивается традиционными методами эмиссионной спектроскопии и спектрофотометрии. Особенно успешно каталитические методы применяются для определения Со, Мп, V, Мд, КЬ, Та. Кроме того, при анализе веществ особой чистоты каталитические методы позволяют определять отдельные анионы, органические соединения в неорганических солях, отклонения от стехиометрии в составе соединений. [c.273]


    Косвенные методы, основанные на разрушении окрашенных соединений, применяют в основном для определения галогенид- и сульфат-ионов и некоторых других анионов. Каталитические реакции используют в кинетических методах анализа в сочетании с фотометрическими для определения как катионов, так и анионов. Основными затруднениями при косвенных определениях являются ограниченная селективность и различные побочные процессы. Косвенные методы трудоемки, и, как правило, менее точны. Однако в ряде случаев, особенно когда необходимо отделение определяемого иона осаждением, использование косвенных определений вполне оправдывается. Кроме того, при таких косвенных определениях может быть достигнута более высокая чувствительность. [c.228]

    Кинетические методы при условии строгого соблюдения условий проведения анализа не уступают другим методам по точности, достаточно экспрессны, легко поддаются автоматизации. В практике аналитической химии эти методы применяют при анализе смесей близких по свойствам органических соединений (некаталитический вариант) определения микроколичеств металлов первого переходного ряда и группы платиновых металлов, ряда анионов (Г, СГ, Вг ) и органических веществ, особенно токсичных и лекарственных препаратов. Каталитические методы используют в анализе промышленных, биологических объектов и объектов окружающей среды. [c.109]

    Анализ сложных эфиров фосфорной кислоты, полученных этим методом, показывает содержание 15-20% непрореагировавших неионогенных ПАВ. Это объясняется тем фактом, что данная смесь содержит моно- и диэфиры пирофосфатов, которым необходима более высокая температура для взаимодействия с гидроксильными соединениями [122]. Короткоцепные эфиры фосфорной кислоты, такие как бутил-фосфорная кислота, являются сильными кислотами с антикоррозионными, антибактериальными, смачивающими и диспергирующими свойствами наряду с хорошей растворимостью. Эфиры с более длинной цепью обладают худшей растворимостью в воде и являются более слабыми кислотами. Превращение в натриевые соли улучшает водорастворимость и чувствительность к жесткой воде. Они хорошие смачивающие агенты и эмульгаторы. Моноэфиры склонны сдерживать пенообразование в присутствии сильных анионов, являются мягкими по отношению к коже и поэтому используются в средствах личной гигиены (чаще всего в Японии). Сложные эфиры фосфорной кислоты гидролитически стабильны, особенно в сильнощелочных условиях, что дает возможность использовать их в смесях для чистки поверхности, применяемых в жестких условиях [123, 124]. [c.54]

    В данном опыте pH вытекающего ра створа был всегда ниже 7, причем в опытном варианте он выше контрольного. Содержание азота, фосфора, кальция и магния (рис. 1) в жидкости, прошедшей через керамзит и смолу, было ниже, чем в контрольном варианте. Содержание указанных элементов в вытекающем растворе по мере роста растений снижалось, что связано с усилением поглощения элементов корнями растений и снижением (в опыте) их десорбции. После окончания опыта смолу отделили от керамзита и разделили на катионит и анионит с помощью 50%-ного раствора сахарозы путем вытеснения определили содержание в них минеральных элементов. Анализы показали, что не весь запас адсорбированных смолой элементов был использован растениями, в особенности это касается содержания кальция. [c.250]

    При построении модели аэрозолей интерес представляет определение влияния индустриальных источников загрязнений на загрязненность атмосферы вдали от них. Такого рода исследования были проведены по программе комплексного энергетического эксперимента в районе Запорожья, а затем в районе Тбилиси и Алма-Ата (табл.8). Влияние городов обнаруживалось на расстояниях в несколько километров и на высотах не менее 3 км [41]. Были исследованы аэрозольные слои (дымовые купола) над этими городами. Компоненты антропогенных и естественных аэрозолей, содержащие железо, так же, как и сажа, весьма эффективно поглощают солнечную радиацию. Возможно, зто способствует возникновению инверсионных слоев в атмосфере, особенно в промышленных районах, что ведет, в свою очередь, к еще большему накоплению аэрозольных и газовых загрязнений. Измерения химического состава аэрозолей в Запорожье, Рустави и Алма-Ате показали высокое содержание сажевых частиц в их атмосфере от 10 до по массе от общего содержания органических веществ. В центре Ленинграда содержание сажевых частиц в отдельных измерениях достигало 30-405 от общего содержания аэрозольных частиц (по массе). Не обнаружено высокого содержания аниона [ 50 Во всех названных городах оно в основном не превышало 5 мкг/м . (Следует отметить, что данные были получены путем химического анализа фильтров, на которых могло не остаться легкоиспаряющейся серной кислоты Значения массовых концентраций Ге,А1,Мд,Мп в отдельных пробах сильно изменялись, что свидетельствует о присутствии в городском воздухе гигантских частиц, содержащих химические соединения этих элементов. Время жизни таких частиц в атмосфере должно быть весьма непродолжительным. [c.47]

    Все растворы в количественном анализе готовят на дистиллированной воде, которая почти не содержит растворенных веществ. Если в работе требуется особенная точность, то берут дважды перегнанную воду (бидистиллят). В последние годы вместо дистиллированной многие лаборатории стали применять воду, деминерализованную (обессоленную) при помощи ионитов. Для этого чаще всего используют синтетические ионообменные смолы, о которых уже говорилось выше. Деминерализация природной воды с помощью ионитов состоит в последовательном пропускании ее через колонку катионита в Н-форме и колонку анионита в ОН-форме. В первой колонке из природной воды поглощаются катионы солей, а во второй — анионы. Обессоленная с помощью ионитов вода пе уступает по качеству дистиллированной. [c.187]

    Тогда как систематический анализ для катионов является общепринятым и установившимся, для систематического хода качественного анализа анионов предложены многочисленные и отличающиеся одна от другой схемы. Все они основываются на осаждении анионов различными катионами (наиболее часто Ва2+ и Ag+), а в некоторых случаях используются окислительно-восстановительные свойства, летучесть кислот, их ангидридов или продуктов их разложения. Число обычных для аналитической практики анионов довольно многочисленно, особенно если учесть и анионы ряда органических кислот (уксусной, лимонной, винной), соли которых нередко встречаются при анализе неорганических образцов. Поэтому систематический анализ анионов связан с большим числом операций выделения, сопровождающихся вводом в систему множества реактивов. Их введение затрудняет последующие этапы систематического анализа и одновременно может стать причиной X внесения некоторых распространенных ионов ( 1ЧS04 СОз , КОз), часто присутствующих в реактивах. Поэтому систематический анализ анионов обычно используют в случае не очень сложных систем, для которых уже имеются ориентировочные данные предварительного анализа. В табл. VIII. 2 представлена одна из схем систематического анализа анионов, включающая наиболее часто встречающиеся анионы. [c.187]

    Следует отметить свойство карбонатов, характерное для всех веществ, содержащих анион СОз , — вспенивание карбонатов под действием сильных кислот с выделением СО2, например СаСОзЧ-2НС1 = = С02 + СаС12- -Н2О. Оно особенно важно для анализа в полевых условиях пород, содержащих минералы — производные элементов главной подгруппы П группы наиболее распространенные в земной коре минералы этих элементов (кроме Ве) являются карбонатами. [c.41]

    Современные методы позволяют получать иониты, физические и химические свойства которых соответствуют специфическим условиям их применения. Например, полиамяновые смолы обладают способностью к анионному обмену, а сульфосмолы — к катионному. В СССР выпускают иониты с различными наименованиями (марками) — КУ-2, КБ-4 и ряд других. Иониты используются в самых различных областях науки и техники при каталитическом крекинге в производстве бензина, для разделения редкоземельных элементов, в лабораториях аналитической химии, при анализе вытяжек из растений, в хроматографии и в ряде других областей. Особенно широко используются иониты для водоочистки. С помощью ионного обмена из воды практически можно удалить любые ионы, а следовательно, выделить разнообразные примеси вплоть до содержащихся в воде некоторых производств солей различных металлов и радиоактивных веществ. [c.190]

    Исторически классический качественный химический анализ развивался как анализ неорганических катионов и анионов (и лишь самых простейших органических анионов, гаких, например, как ацетат-ион СНзСОО" и оксалат-ион СгО] ). Качественный анализ органичесыгх соединений, основанный преимущественно на открытии этих веществ по реакциям на функциональные группы, развивался параллельно со становлением органической химии и нашел особенно широкое применение в фармацевтическом анализе, поскольку очень многие лекарственные препараты включают органические вещества. [c.34]

    Влияние анионов на эмиссию и абсорбцию натрия (анионный эффект). Этот вопрос имеет большое практическое значение для правильной подготовки пробы к анализу [32—34, 72, 74—76, 99, 149, 403, 453, 486, 488, 497, 545, 584, 620, 713, 728, 872, 875, 1031, 1208, 1284J. Механизм взаимного влияния при определении элементов атомно-эмиссионным и атомно-абсорбционным методами в пламенах трактуется по-разному с точки зрения физических свойств раствора, особенно при введении органических кислот с позиций изменения условий атомизации за счет образования новых термически более устойчивых соединений натрия при десольватации частиц аэрозоля смещения равновесия атомизации в пламени за счет ионизационных процессов с участием анионов. [c.123]

    Обычно при выполнении массовых анализов, особенно в нашей стране, проводят прямое кондуктометрическое детектирование. Этим методом трудно определять переходные металлы, что связано главным образом с возможностью образования гидроксидов на подавляющей колонке, а также с недостаточной чувствительностью и селективностью. Существует и косвенный вариант кондуктометриче-ского детектирования, когда элюент перЁводят в соединение, обладающее высокой электропроводностью, а определяемый ион - в слабо проводящее соединение [34]. Таким образом определяют катионы слабых оснований и анионы слабых кислот. [c.95]

    Относительная легкость, с которой хром переходит в состояния окисления 2-f, 3 +, и4 +, в значительной мере упрощает его отделение от многих элементов, мешающих его определению. Так, окисление Сг(1П) до r(VI) перекисью водорода или бромом в щелочном растворе с последующим фильтрованием гидроокисей приводит к отделению от многих металлов. Отделение от анионов достигается затем восстановлением r(VI) до Сг(1И) добавлением кристаллического сульфита натрия и осаждением Сг(ОН)з с помощью NaOH или Nag Og. Этот прием особенно широко используется в радиохимических исследованиях [239, 327] и при анализе различных объектов [94, 266]. Для выделения микроколичеств хрома используют соосаждение Сг(П1) с гидроокисями Fe(III), Ti(IV), [327, 348, 350]. Показано [350], что малые количества Сг(1П) могут быть количественно выделены из растворов с pH 5,5—10,5 с гидроокисями Fe(HI), Zr(IV), Th(IV), Ti(IV), e(IV), La(III), Al(III). Для последующего отделения r(III) от больших количеств указанных элементов используют окисление Сг(1П) до r(VI) с вторичным осаждением гидроокисей [203, 348]. Для проверки полноты такого разделения изучено соосаждение r(VI) с гидроокисями металлов при использовании в качестве осадителя 0,5 М КОН (рис. 20) [348]. С уменьшением pH раствора способность удержания хромат-ионов осадками гидроокисей возрастает в ряду Ti(I V) < Fe(III) < Zr(IV) < Th(IV) < d(n) < Y(III). Отделение микроколичеств Сг(1И) от больших количеств r(VI) проводят с помощью соосаждения Сг(П1) с Zn(0H)2. Эту методику используют при определении примеси Сг(1И) в радиоактивных препаратах Ка СгО , Кз СгаО, и 1СгОз[675]. Для отделения 0,01— 5 J t3 Сг(1П) от 0,01 —10 мг Mo(VI) используют свойство Mo(VI) не соосаждаться с осадком Mg(0H)2 при pH 11,5, в то время как при небольших содержаниях 5 мг) Сг(1П) количественно соосаждается при pH 10,3—13,8 [349]. Отделение Mo(VI) от r(VI) проводят аналогичным образом, но с добавлением этанола для восстановления r(VI) до Сг(1И). Разделение Сг(1И) и Fe(II) ос- [c.126]

    При рассмотрении характера ионных соединений, образуемых элементами периодической системы, проявляются определенные закономерности. Например, На+ с электронной конфигурацией внешней оболочки 2з 2р , соединяясь с С1 , имеющим конфигурацию 3s 3p , образует ионный кристалл НаС1 (структура типа каменной соли). Аналогичную структуру дают и другие катионы подгруппы 1А с анионами подгруппы УИБ, за исключением некоторых солей Сз+. Катион Си+ с конфигурацией Зз Зр Зс с анионами подгруппы УИБ дает кристаллы со структурой типа СиС1. Для такого типа катионов структура существенно зависит от того, к какой подгруппе периодической системы они относятся. Для выяснения имеющихся в этой области закономерностей прежде всего необходимо понять особенности образуемых этими ионами соединений. Далее проведен краткий анализ для соединений, имеющих структуру типа ЫаС1. [c.176]

    Показательно, что, согласно рентгеноструктурному анализу, аддукт 7-метоксн-4,6-динитробензофуразана с метилатом калия (32) содержит тетраэдрический углерод также рядом с гетероциклом, а не между нитрогруппами [469). Но особенно важно то, что детали структуры свидетельствуют о концентрации анионного заряда на пара-нитрогруппе (по отношению к тетраэдрическому углероду) в частности, в паранитрогруппе связь СК укорочена, а связи N0 удлинены по сравнению со связями в орто-нигрогруппе (имеющей нормальные для нейтральных ароматических нитросоединений геометрические параметры) и, кроме того, пара-нитрогруппа повернута вокруг связи СК по отношению к плоскости кольца лишь на 3°, а орто-нитрогруппа - на 11°. По данным рентгеноструктурного анализа, аналогичное отличие пара-нитрогруппы от орто-нитрогруппы наблюдается также н в других комплексах Мейзен- [c.334]

    Термин гидрофильно-липофильный баланс (ГЛБ) впервые был предложен Клейтоном и относился к соотношению гидрофильной и липофильной частей молекулы ПАВ. Позднее Гриффин разработал концепцию ГЛБ для эмульгаторов на основе их растворимости в воде. Значение ГЛБ — это экспериментальное число, изначально относяше-еся к неионогенным ПАВ и получаемое на основе множества тестов эмульсий. Теперь эта концепция не ограничена лишь данной группой ПАВ и применяется к катионным и анионным ПАВ. Сушествует множество опубликованных данных по ГЛБ ПАВ [16], которые будут полезны при подборе ПАВ в составы определенного назначения. Диапазоны ГЛБ для различных областей применения приведены в табл. 6.3 [17]. Рассмотрим способы оценки ГЛБ ПАВ, особенно для смесей. Данные методы подходят не только для определения значения ГЛБ, но пригодны и для анализа поведения смесей ПАВ. [c.217]

    На основе анализа этих особенностей кривых С — Е, представленных на рис. 87, можно предположить, что механизм адсорбции длинноценочечных катионов на поверхности раздела ртуть — раствор должен более или менее отличаться от механизма адсорбции длинноцепочечных анионов. В последнем случае адсорбция будет происходить преимущественно на положительно поляризованной поверхности, в то время как катионы будут адсорбироваться главным образом па отрицательно поляризованной поверхности. Однако простой симметрии в форме кривых С — Е в этих обоих случаях не обнаруживается, вероятно вследствие различий в характере адсорбционных сил. [c.233]


Смотреть страницы где упоминается термин Особенности анализа анионов: [c.188]    [c.248]    [c.151]    [c.4]    [c.126]    [c.69]    [c.258]    [c.293]    [c.33]    [c.265]    [c.334]   
Смотреть главы в:

Аналитическая химия -> Особенности анализа анионов




ПОИСК





Смотрите так же термины и статьи:

Анализ анионов



© 2025 chem21.info Реклама на сайте