Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость с химическим взаимодействием

    Процессы ассоциации зависят не только от свойств растворенных молекул, анионов и катионов, но и от свойств той среды, в которой эти молекулы, анионы и катионы находятся, т. е. от взаимодействия между растворителем, молекулами растворенного вещества, сложными ионами, простыми ионами и агрегатами молекул. Каждый из трех процессов (диссоциация, ассоциация и комплексная диссоциация) зависит от физических и химических свойств растворителя, от его диэлектрической проницаемости, химической природы и т. д. При этом чем ниже диэлектрическая проницаемость, тем больше эти процессы сдвинуты в сторону агрегации всех частиц, находящихся в растворе. [c.107]


    Нефтяные масла рассматриваются в виде дисперсных систем. При этом установлено, что в зависимости от способа получения и соответственно вязкости масел, дистиллятных, остаточных, компаундированных в них образуются структурные элементы различного строения [ 10]. Наличием межмолекулярных взаимодействий между компонентами смесей парафино-нафтеновых и тяжелых ароматических углеводородов объясняется неподчинением правилу аддитивности таких их свойств, как диэлектрическая проницаемость и экстинкция. В некоторых работах [И] показано, что бензольное кольцо является специфическим центром межмолекулярных взаимодействий за счет чего ароматические углеводороды в растворах образуют ассоциаты, состав и устойчивость которых зависит от химического строения взаимодействующих молекул. В маслах и топливах обнаружены явления самоассоциации ароматических углеводородов и ассоциации их с присадками [ 12]. [c.35]

    Уникальные каталитические свойства ферментов (см. гл. I) обусловлены весьма сложным механизмом их действия, многие стороны которого еще до конца не раскрыты. Всеобщее признание, однако, получило представление, согласно которому ферментативный катализ обусловлен по крайней мере тремя основными причинами во-первых, тем, что сорбция субстрата на ферменте протекает так, чтобы облегчить последующую химическую реакцию во-вторых, полифункциональ-ным характером химического взаимодействия между ферментом и сорбированным субстратом (или субстратами) и, наконец, в-третьих, эффектами микросреды, характеристики которой (диэлектрическая проницаемость, полярность и др.) в области активного центра могут существенно отличаться от соответствующих показателей водного раствора. В настоящей главе будут рассмотрены именно эти три физикохимических механизма ускорений в реакциях, катализируемых ферментами. Наиболее подробно остановимся на первом из них ( 1—4), поскольку именно здесь удалось глубоко и количественно проникнуть в природу движущих сил катализа. [c.34]

    Так, структурные особенности поверхностного слоя белковых глобул позволяют сосредоточить в активном центре большое число различных по химической природе функциональных групп, способных не только сорбировать молекулу субстрата, но также и взаимодействовать с ней химически (см. гл. I). Среда активного центра обладает высокоразвитой микрогетерогенностью, где гидрофобные участки с исключительно низкой диэлектрической проницаемостью и полярностью (по сравнению с водой) чередуются с сильно гидратированными полярными областями с высоким электростатическим потенциалом и т. д. Поверхностный слой характеризуется также и повышенной микровязкостью. Все эти эффекты способствуют в конечном итоге многоцентровому взаимодействию фермента (его активного центра) с молекулой субстрата. [c.68]


    Связь р/( кислоты С обратной величиной диэлектрической проницаемости растворителя была экспериментально установлена еще до появления теории Бренстеда —Лоури, как правило, Каблукова— Нернста—Томсена. Многочисленные отклонения от уравнения (3.5) связаны с несовершенством теории, не учитывающей специфичность химического взаимодействия. Линейная зависимость рК от 1/е обычно соблюдается лишь в ряду растворителей близкой химической природы (например, в ряду спиртов). [c.32]

    Химическая теория растворов Д. И. Менделеева рассматривает растворитель не только как среду, в которой протекает реакция, но и как непосредственного участника химического процесса. Как среда для протекания реакции растворитель обычно характеризуется диэлектрической проницаемостью. Как участника реакции кислотно-основного взаимодействия растворитель можно характеризовать его донорно-ак-цеп торны ми свойствами по отношению к протону. Конечно, эти свойства не исчерпывают своеобразия и природу растворителя, поскольку существует еще и специфическое взаимодействие. [c.34]

    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитро-замещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково [c.9]

    Эти величины, выраженные в логарифмических единицах и приведенные в последней графе таблицы, изменяются от 3,5 для уксусной кислоты до 0,8 для 2,6-динитрофенола. Это показывает, что различное влияние ацетона на силу кислот при переходе от смеси диоксана с водой (смешанный растворитель обладает химическими свойствами, близкими к воде, но диэлектрической проницаемостью ацетона) определяется прежде всего отличием в энергии сольватации (взаимодействия) анионов кислот с дипольными [c.338]

    Массообмен между водной и органической фазами зависит также от химических свойств веществ. — он сопровождается разрушением химических связей экстрагируемого вещества с водой и возникновением их в органической фазе. Подавляющее большинство неорганических веществ в водном растворе полностью или частично диссоциированы, а их ионы и молекулы гидратированы. В органической же фазе они находятся в недиссоциированной форме (за исключением случаев, когда используется экстрагент с достаточно большой диэлектрической проницаемостью), но могут образовывать более или менее прочные соединения с органическими растворителями. Химические взаимодействия в экстракционной системе протекают как внутри фаз, так и на границах их раздела. Механизм экстракции зависит от свойств веществ, от их растворимости в водной и органической фазах, от состава последних, от коэффициентов диффузии и др. В большинстве случаев органический растворитель диффундирует в водную фазу (растворяется в ней), взаимодействует с экстрагируемым компонентом и образующееся соединение диффундирует в органическую фазу. Сравнительно более редки процессы, когда экстрагируемый компонент просто диффундирует из водной фазы в органическую, не взаимодействуя с экстрагентом или взаимодействуя с ним в органической фазе, а также на границе раздела фаз. Но возможны случаи совмещенного механизма, когда химическое взаимодействие идет одновременно и внутри жидких фаз, и на границах из раздела. Возможны также случаи взаимодействия экстрагируемого вещества с экстрагентом с образованием веществ, не- [c.316]

    Таким образом, на основании глубокого и всестороннего анализа опытных данных, можно сделать вывод, что химическое взаимодействие ионов с молекулами растворителя, наряду с диэлектрической проницаемостью, оказывает решающее влияние на электропроводность растворов. [c.123]

    Главная особенность теории Бренстеда — учет роли растворителя в кислотно-основном равновесии, растворитель рассматривается не только как физическая среда с определенным значением диэлектрической проницаемости, но и как вещество, которое химически реагирует с кислотой или основанием. При взаимодействии кислоты НА с растворителем S протекает реакция [c.89]

    Низкие вязкость (1/4 вязкости воды) и плотность жидкого аммиака обусловливают подвижность ионов в нем и легкость проведения химических реакций, в том числе гетерогенных, в которых ведущую роль играют процессы диффузии растворенных соединений. Высокое значение дипольного момента облегчает химическое взаимодействие между полярными молекулами аммиака и ионами, а также между самими молекулами аммиака. Диэлектрическая проницаемость аммиака значительно меньше, чем диэлектрическая проницаемость воды (е = 78,5), однако она гораздо больше, чем диэлектрическая проницаемость уксусной кислоты ( = 6,4). Поэтому естественно ожидать, что значения растворимости ионных солей [c.167]


    Физическое, или как его нередко называют, термодинамическое направление в теории растворов в конце XIX века получило весьма прочный теоретический фундамент благодаря тому, что в 1893 г. Нернст и Томсон заменили понятие диссоциирующая сила растворителя , неопределенность которого вызывала справедливую критику представителями химической теории растворов, понятием диэлектрическая проницаемость . С другой стороны, химическая теория растворов быстро накопляла факты, свидетельствующие о химическом взаимодействии между растворенным веществом и растворителем. Именно в это время были выполнены классические работы Д. П. Коновалова, установившего факт (который на несколько десятилетий стал краеугольным камнем химической теории растворов) образования электролитного раствора при смешении не проводящих в индивидуальном состоянии ток компонентов. Тогда же В. Ф. Тимофеев нашел, что между растворимостью и химическими свойствами растворителя существует тесная связь. [c.173]

    В подавляющем большинстве случаев энергия любой химической связи состоит из двух составляющих — ковалентной и электростатической . Запомнив это, обратимся к такому важному свойству жидкости, каким является диэлектрическая проницаемость (ДП) — коэффициент, который показывает, во сколько раз энергия электростатического взаимодействия в данной жидкой среде ослабляется по сравнению с вакуумом. Таким образом, если мы говорим, что какая-то жидкость характеризуется диэлектрической проницаемостью, равной 20,2, это означает, что два каких-то заряженных иона, либо две дипольных молекулы, либо дипольная молекула и ион взаимодействуют друг с другом в этой жидкости с энергией в 20,2 раза меньшей, чем эти объекты взаимодействовали бы друг с другом в вакууме. [c.26]

    Общим для всех разновидностей электростатического взаимодействия является обратно пропорциональная зависимость от диэлектрической проницаемости. Если считать, что в первом приближении прн каждом конкретном взаимодействии расстояния между взаимодействующими частицами в растворе постоянны, то энергия химической реакции в растворе в соответ- [c.34]

    Количественные обобщения и влияние растворителя на скорость химических реакций распространяются прежде всего на те три основных типа взаимодействий в растворах, которые перечислялись на с. 33—34. Поскольку энергия всех этих взаимодействий в первом приближении обусловлена электростатическими взаимодействиями, то разумеется, и здесь влияние диэлектрической проницаемости выступает на первый план. [c.79]

    Так же как и при рассмотрении равновесных процессов, при выводе уравнений, связывающих скорость процесса с диэлектрической проницаемостью, предполагалось, что растворитель — химически индифферентная среда. Однако химические (специфические) взаимодействия растворенного вещества с растворителем оказывают громадное влияние на скорость химической реакции. Влияние ЭТО часто бывает настолько велико, что диэлектрическая проницаемость растворителя отходит на второй план, а то и вовсе не сказывается. Здесь для иллюстрации этого положения можно обойтись одним, зато достаточно выразительным, примером. Реакция дегидробромирования пентабромэтана пиридином [c.81]

    Как упоминалось выще, диэлектрическую проницаемость и дипольные моменты часто используют для количественного описания полярности растворителей. Следует отметить, однако, что охарактеризовать растворитель по его полярности пока что невозможно, потому что до сегодняшнего дня отсутствует четкое определение термина полярность . Под полярностью можно понимать, во-первых, постоянный дипольный момент соединения, во-вторых, его диэлектрическую проницаемость и, в-третьих, сумму всех свойств молекул, ответственных за любые взаимодействия между молекулами растворителя и растворенного вещества (в том числе кулоновское, ориентационное, индукционное и дисперсионное взаимодействия, образование водородных связей и взаимодействия типа ДЭП/АЭП) [33]. С так называемой полярностью растворителя связан другой важный параметр — его общая сольватирующая способность. Последняя в свою очередь зависит от всех специфических и неспецифических взаимодействий между растворителем и растворенным веществом. Поэтому в настоящей книге термин полярность растворителя будет отвечать третьему из указанных выше определений. Следует подчеркнуть, что это определение исключает все взаимодействия, приводящие к химическому изменению растворенного вещества (в том числе протонированию, окислению, восстановлению и комплексообразованию). [c.100]

    Растворители, не вступающие с растворителем в химическое (специфическое) взаимодействие (далее такие растворители будем называть универсальными), влияют лишь на электростатическую составляющую общей энергии связи в ассоциате. Поскольку свободная энергия процесса жестко связана с его константой равновесия AG = —J T in К, между логарифмом константы димер-мо-номерного равновесия и обратной диэлектрической проницаемостью (1/б) в универсальных средах должна соблюдаться прямо пропорциональная зависимость  [c.7]

    Влияние химических свойств растворителя на молекулярное состояние растворенного соединения можно проследить на большом числе примеров. Так, АШгз димерен в бензоле, но мономерен в гораздо более химически активном по отношению к нему и лишь незначительно превышающем бензол по величине диэлектрической проницаемости бромистом этиле [798] (о природе взаимодействия компонентов и последней системы см. разделы 1.5.2 и 1.5.3). Отношение равновесных концентраций мономера и димера в растворах карбоновых кислот в каждом данном растворителе увеличивается с повышением силы кислоты [558, 15]. Имеются все основания ожидать аналогичного поведения апротонных ( ) -кислот. [c.8]

    Существует несколько видов классификации растворителей по химическим классам, по физическим константам, например температуре кипения, вязкости, диэлектрической проницаемости и т. д., по кислотно-основным свойствам, по специфическому взаимодействию с растворенным веществом. Наиболее важными являются две последние классификации. [c.4]

    Согласно данным ряда авторов [134—136], масляные фракции являются дисперсными системами аренов в циклоалкановых дисперсионных средах, причем в маслах различного уровня вязкости (дистиллятных, остаточных, компаундированных) образуются а.с-социаты различного строения. Неподчинение аддитивности таких физико-химических смесей алканов, циклоалканов и тяжелых аренов, как диэлектрическая проницаемость и экстинкция, обусловлено проявлением межмолекулярного взаимодействия между компонентами смеси. В работе [135] показано, что арены в растворах образуют ассоциаты, состав и устойчивость которых зависят от химического строения взаимодействующих молекул, а бензольное кольцо является специфическим центром межмолекулярного взаи-молействия. [c.34]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Теоретическое исследование кинетики и механизма химических реакций в растворах — намного более сложная задача по сравнению с исследованием газовых реакций, поскольку р растворах реагирующие вещества могут взаимодействовать с растворителем (следует учитывать влияние диэлектрической проницаемости растворителя, степень гидратации, присутствие посторонних компонентов и т. д.). Существует много различных типов реакций в растворах для некоторых из них влиянием растворителя мож но пренебречь (особенно в тех случаях, когда используются неполярные растворители). При некоторых условиях участники реакции взаимодействуют с такой же скоростью, как и в газах, как, например, при разложении N205. Существенным фактором является число столкновений между молекулами реагирующих веществ в растворе (включая растворитель). Дебай и Рабинович провели оценку числа столкновений в растворе, согласно которой оно примерно в три раза больше, чем в газовой фазе. Это согласуется с экспериментальными данными, также подтверждающими, что фактор столкновений для реакций в растворах увеличивается примерно в три раза. Так как энергия активации практически не меняется, скорость реакций в растворе также увеличивается в три раза по сравнению с газовыми реакциями. Для реакций в растворе характерна также небольшая подвижность реагирующих частиц (по сравнению с реакциями в газовой фазе). Для цепных и других реакций, в которых появляются Б качестве промежуточных частиц радика- [c.183]

    Величина поверхностного натяжения является мерой интенсивности молекулярно-силового поля в поверхностном слое. Поскольку поверхностное натяжение является результатом нескомпенсированности меясмолекулярного взаимодействия в разных фазах, оно определяется разностью интеисивности взаимодействия молекул внутри каждой фазы (когезии) и взаимодействия молекул различных фаз (адгезии). Интенсивность молекулярных взаимодействий внутри ф .зы в теории поверхностных явлений обычно обозначают термином полярность . Полярность вещества в очень больш(л1 степени связана с такими ее параметрами, как дипольный момент молекул, диэлектрическая проницаемость, поляризуемость молекул, способность к образованию водородной связи меясду молекулами. Существенную роль играют также плотность (молярный объем) вещества, геометрия строения ьолекул, ориентация молекул в поверхностном слое, определяющая направление силовых полей, возможная взаимная растворимость граничащих фаз, их химическое взаимодействие. [c.189]

    Полярная связь. Выше мы рассмотрели характер химической связи, возникающей между одинаковыми атомами. При этом было очевидно, что образующие связь электроны равномерно распределены вокруг взаимодействующих атомов. Если атомы по своей химической природе различны, образующие связь электроны находятся преимущественно вблизи атомов, обладающих наибольшими значениями электроотрицательиости (см. 6). Такая связь называется полярной, причем мерой полярности служит величина, равная квадрату разности электроотрицательностей взаимодействующих атомов. В качестве примера полярной связи можно указать ца химическую связь в молекулах воды или хлористого водорода. Молекулы с полярной связью являются электрическими диполями и поггроенные из них тела обладают обычно высокими значениями диэлектрической проницаемости. [c.69]

    Диэлектрическая проницаемость не является единственной причиной ионизирующего действия растворителя. Внутри ряда гидроксилсодержащих растворителей (вода, алифатические спирты) хорошо просматривается тенденция к уменьшению степени диссоциации по мере уменьшения диэлектрической проницаемости. В начале ряда —в растворах метанола и этанола — наблюдается полная или почти полная диссоциация солей. В то же время в растворах нитрометана (0 = 37) или ацетонитрила [О = 37) некоторые соли ионизируются заметно хуже, хотя диэлектрическая проницаемость у них больше, чем у метанола (0 = 31,5) и этанола (I) = 25). Второй пример в жидком циа-новодороде ( )=9б) растворимость и ионизация многих электролитов меньше, чем в воде, для которой Д = 81 (20°С). Приведенные примеры показывают роль химических взаимодействий между электролитом и растворителем, зависящих от природы как электролита, так и особенно растворителя. [c.406]

    Таким образом, в возбужденной паре (MN) может возникнуть электростатическое взаимодействие между М+ и N направление перехода электрона зависит от химических особенностей взаимодействующих частиц. Эксиплексы имеют большие ди-польпые моменты из-за характера связывания при переносе заряда, и их спектр излучения зависит от диэлектрической проницаемости растворителя. При образовании эксимеров дипольный момент не возникает, поскольку две молекулы, составляющие эксимер, одинаковы. Однако резонанс между структурами M+M п М М+ в какой-то степени стабилизирует комплекс за счет переноса заряда. [c.134]

    Таким образом, кислота НА не только диссоциирует на ионы Н+ и А" в среде с высокой диэлектрической проницаемостью, но и химически взаимодействует с дипольными молекулами воды, образуя электролит, называемый, по Бренстеду, протолнтом. Водный раствор кислоты можно назвать раствором соли гидроксония. [c.55]

    На реакции нуклеофильного замещения, подобно любой по.1, р-ной реакции, оказывает влияние растворитель, хотя степень эмдо злпяния может изменяться от реакции к реакции. Вообще гоы и, в процессе химической реакции образование нонов возможно ко в том случае, если оии сольватируются. Для грубой оЦ м ки сольватациониых свойств растворителя можио использовать - к диэлектрическую проницаемость. Однако последняя — макрг I пическая величина, тогда как специфическое взаимодействие М1 к-ду растворителем и растворенным веществом происходит в с- -ре действия сил межмолекулярного притяжения и отталкивания. [c.242]

    Сильное взаимодействие иона с растворителем отражается на всех физико-химических свойствах растворов электролитов. Классическая электростатическая теория рассматривает /-Й ион как сферу радиусом г, с зарядом Z/e, а растворитель - как среду с диэлектрической проницаемостью е = ефхр(-ЬсТ). [c.224]

    В заключение следует подчеркнуть, что электростатин ская теория эффектов растворителей оказалась очень полезной, при изучении и расчете кинетики разнообразных реакций в. растворах. Однако, несмотря на некоторые достижения такого подхода, ему все же присущ один принципиальный недостаток, обусловленный пренебрежением множеством других типов взаимодействия растворителя с растворенными веществами, в том числе взаимной поляризацией ионов или биполярных молекул, специфической сольватацией и другими, а также возможностью отклонения локальной микроскопической диэлектрической проницаемости в непосредственном окружении реагирующих частиц от макроскопической диэлектрической проницаемости среды. Расхождения между экспериментальными и расчетными данными, а также тот очевидный факт, что диэлектрическую проницаемость нельзя рассматривать как единственный параметр, обусловливающий изменение скорости химических реакций в растворах, явились причиной разработки различных полуэмпирических урав- [c.297]

    НОСТЬ сольватировать реагенты или активированные комплек сы, а также молекулы в основном и возбужденном состояниях [1, 3]. В свою очередь сольватирующая способность растворителя зависит от всех специфических и неспецифических взаимодействий между молекулами растворителя и растворенного вещества, в том числе электростатических взаимодействий между ионами, ориентационных взаимодействий между биполярными молекулами, индукционными и дисперсионными взаимодействиями, образованием водородных связей, переносом заряда, а также сольвофобными взаимодействиями (см. гл. 2). При этом не учитываются только такие взаимодействия, которые приводят к определенным химическим изменениям молекул растворенного вещества, например к протонированию, окислению, восстановлению, комплексообразованию. Очевидно, что определяе мую таким образом полярность растворителя нельзя описать каким-либо одним физическим параметром, например диэлектрической проницаемостью. Действительно, очень часто не удается обнаружить какой-либо корреляции между диэлектрической проницаемостью [или той или иной ее функцией, например 1/бг, (вг—1)/(2ег+1)] и логарифмом скорости или константой равновесия зависящей от природы растворителя химической реакции. Вероятно, вообще не существует такого макроскопического физического параметра, с помощью которого можно было бы учесть все многочисленные взаимодействия между растворителем и растворенным веществом, осуществляющиеся на молекулярном уровне. До настоящего времени сложность взаимодействий между растворителем и растворенным веществом не позволяет найти достаточно общие математические выражения, с помощью которых можно было бы вычислить скорости или константы равновесия реакций в растворителях различной полярности. [c.487]

    Растворимость препаратов лигнина, как и других полимеров, определяется строением и молекулярной массой, а также природой растворителя, главным образом, полярностью. Препараты лигнина могут растворяться в некоторых органических растворителях (диметилсульфоксид, диметилформамид, диоксан и др.), тогда как в других они не растворяются или растворяются частично. Известно, что растворимость вещества зависит от соотношения его полярности и полярности растворителя. Растворимость при этом будет максимальной, когда определенные свойства (способность к образованию Н-связей, химическое строение и т.п.) растворителя и растворяемого вещества близки. Наиболее часто растворяющую способность по отношению к полярным полимерам определяют по энергии когезии и способности к образованию водородных связей. Влияние энергии когезии оценивают по параметру растворимости (см. 7.1). Для лигнина этот показатель оценивается значением порядка 22500 (Дж/м ) . Шурх установил, что растворители с параметром растворимости, сильно отличающимся от этого значения, не растворяют препараты лигнина, а у растворителей с близкими значениями параметра растворимости растворяющая способность возрастает с увеличением способности к образованию водородных связей. Чем сильнее разница как в параметрах растворимости, так и в способности к образованию Н-связей, тем в большей степени должен быть деструктурирован лигнин для перехода в раствор. Полярность растворителя удобно характеризовать диэлектрической проницаемостью, связанной с параметром растворимости эмпирическим уравнением линейного типа. Существуют также попытки связать растворимость лигнина с параметрами, учитывающими донорно-акцепторные взаимодействия в системе полимер-растворитель. [c.412]

    Итак, в ФСК достигается структурное соответствие, реализуемое в полости молекулы фермента. Как показывает сопоставление всех изученных рентгенографически структур, их общая особенность состоит в том, что внутренняя поверхность полости образована преимущественно неполярными остатками. Вследствие гидрофобных взаимодействий полярные остатки выведены наружу. Неполярное нутро белковой молекулы имеет малую диэлектрическую проницаемость, что облегчает электрические взаимодействия. Фермент является не только специфическим реагентом, но и средой реакции. Нерутц писал Мы можем спросить себя, почему химические реакции, нормально требующие мощных органических растворителей или сильных кислот и оснований, могут протекать в водном растворе вблизи нейтрального pH в присутствии ферментных катализаторов. Органические растворители имеют преимущества по сравнению с водой, обеспечивая среду с низкой диэлектрической проницаемостью, в которой могут иметь место сильные электрические взаимодействия между реагентами. Неполярные внутренние области ферментов обеспечивают живую клетку эквивалентами органических растворителей, применяемых химиками . [c.192]

    Тафт С сотр. [93] обнаружил, что в растворе четыреххлористого углерода химический сдвиг атома фтора в молекуле п-фторнитробензола, измеренный относительно фторбензола, сильно зависит от концентрации п-фторнитробензола. Для концентраций до 2 М характер зависимости соответству образованию димера с константой ассоциации 0,25 и химическим сдвигом относительно мономера, равным—1,7. м.д. Для 3,4-дифторнитробензола константа ассоциации равна 0,29. Обычно атом фтора в положении 3 относительно нитрогруппы оказывает большее влияние на скорость и равновесие, чем атом фтора в положении 4. Поэтому кажется вероятным, что константа ассоциации самого нитробензола также близка к 0,25. Если принять это значение константы ассоциации и допустить, что димер имеет нулевой дипольный момент, то удается количественно объяснить данные Хоендаля (цитируются по [94]), касающиеся диэлектрической проницаемости растворов нитробензола в четыреххлористом углероде с концентрацией до 2 М. Приняв константу ди-меризации равной 0,4 при 3 °С, можно количественна объяснить данные Б )и и Дженкинса [95] по температурам замерзания растворов нитробензола в бензоле. И малое влияние атома фтора в положении 3 на химический сдвиг и данные по диэлектрической проницаемости нитробен-зольных растворов подтверждают гипотезу о том, что димер образуется за счет электростатического взаимодействия диполей нитрогрупп в двух противоположным образом ориентированных молекулах. [c.332]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость с химическим взаимодействием: [c.448]    [c.133]    [c.207]    [c.141]    [c.269]    [c.128]    [c.206]    [c.554]    [c.91]    [c.403]    [c.26]    [c.89]    [c.8]   
Растворитель как средство управления химическим процессом (1990) -- [ c.48 , c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Диэлектрическая проницаемость взаимодействия



© 2025 chem21.info Реклама на сайте